...

Source file src/runtime/sigqueue.go

     1	// Copyright 2009 The Go Authors. All rights reserved.
     2	// Use of this source code is governed by a BSD-style
     3	// license that can be found in the LICENSE file.
     4	
     5	// This file implements runtime support for signal handling.
     6	//
     7	// Most synchronization primitives are not available from
     8	// the signal handler (it cannot block, allocate memory, or use locks)
     9	// so the handler communicates with a processing goroutine
    10	// via struct sig, below.
    11	//
    12	// sigsend is called by the signal handler to queue a new signal.
    13	// signal_recv is called by the Go program to receive a newly queued signal.
    14	// Synchronization between sigsend and signal_recv is based on the sig.state
    15	// variable. It can be in 3 states: sigIdle, sigReceiving and sigSending.
    16	// sigReceiving means that signal_recv is blocked on sig.Note and there are no
    17	// new pending signals.
    18	// sigSending means that sig.mask *may* contain new pending signals,
    19	// signal_recv can't be blocked in this state.
    20	// sigIdle means that there are no new pending signals and signal_recv is not blocked.
    21	// Transitions between states are done atomically with CAS.
    22	// When signal_recv is unblocked, it resets sig.Note and rechecks sig.mask.
    23	// If several sigsends and signal_recv execute concurrently, it can lead to
    24	// unnecessary rechecks of sig.mask, but it cannot lead to missed signals
    25	// nor deadlocks.
    26	
    27	// +build !plan9
    28	
    29	package runtime
    30	
    31	import (
    32		"runtime/internal/atomic"
    33		_ "unsafe" // for go:linkname
    34	)
    35	
    36	// sig handles communication between the signal handler and os/signal.
    37	// Other than the inuse and recv fields, the fields are accessed atomically.
    38	//
    39	// The wanted and ignored fields are only written by one goroutine at
    40	// a time; access is controlled by the handlers Mutex in os/signal.
    41	// The fields are only read by that one goroutine and by the signal handler.
    42	// We access them atomically to minimize the race between setting them
    43	// in the goroutine calling os/signal and the signal handler,
    44	// which may be running in a different thread. That race is unavoidable,
    45	// as there is no connection between handling a signal and receiving one,
    46	// but atomic instructions should minimize it.
    47	var sig struct {
    48		note       note
    49		mask       [(_NSIG + 31) / 32]uint32
    50		wanted     [(_NSIG + 31) / 32]uint32
    51		ignored    [(_NSIG + 31) / 32]uint32
    52		recv       [(_NSIG + 31) / 32]uint32
    53		state      uint32
    54		delivering uint32
    55		inuse      bool
    56	}
    57	
    58	const (
    59		sigIdle = iota
    60		sigReceiving
    61		sigSending
    62	)
    63	
    64	// sigsend delivers a signal from sighandler to the internal signal delivery queue.
    65	// It reports whether the signal was sent. If not, the caller typically crashes the program.
    66	// It runs from the signal handler, so it's limited in what it can do.
    67	func sigsend(s uint32) bool {
    68		bit := uint32(1) << uint(s&31)
    69		if !sig.inuse || s >= uint32(32*len(sig.wanted)) {
    70			return false
    71		}
    72	
    73		atomic.Xadd(&sig.delivering, 1)
    74		// We are running in the signal handler; defer is not available.
    75	
    76		if w := atomic.Load(&sig.wanted[s/32]); w&bit == 0 {
    77			atomic.Xadd(&sig.delivering, -1)
    78			return false
    79		}
    80	
    81		// Add signal to outgoing queue.
    82		for {
    83			mask := sig.mask[s/32]
    84			if mask&bit != 0 {
    85				atomic.Xadd(&sig.delivering, -1)
    86				return true // signal already in queue
    87			}
    88			if atomic.Cas(&sig.mask[s/32], mask, mask|bit) {
    89				break
    90			}
    91		}
    92	
    93		// Notify receiver that queue has new bit.
    94	Send:
    95		for {
    96			switch atomic.Load(&sig.state) {
    97			default:
    98				throw("sigsend: inconsistent state")
    99			case sigIdle:
   100				if atomic.Cas(&sig.state, sigIdle, sigSending) {
   101					break Send
   102				}
   103			case sigSending:
   104				// notification already pending
   105				break Send
   106			case sigReceiving:
   107				if atomic.Cas(&sig.state, sigReceiving, sigIdle) {
   108					if GOOS == "darwin" {
   109						sigNoteWakeup(&sig.note)
   110						break Send
   111					}
   112					notewakeup(&sig.note)
   113					break Send
   114				}
   115			}
   116		}
   117	
   118		atomic.Xadd(&sig.delivering, -1)
   119		return true
   120	}
   121	
   122	// Called to receive the next queued signal.
   123	// Must only be called from a single goroutine at a time.
   124	//go:linkname signal_recv os/signal.signal_recv
   125	func signal_recv() uint32 {
   126		for {
   127			// Serve any signals from local copy.
   128			for i := uint32(0); i < _NSIG; i++ {
   129				if sig.recv[i/32]&(1<<(i&31)) != 0 {
   130					sig.recv[i/32] &^= 1 << (i & 31)
   131					return i
   132				}
   133			}
   134	
   135			// Wait for updates to be available from signal sender.
   136		Receive:
   137			for {
   138				switch atomic.Load(&sig.state) {
   139				default:
   140					throw("signal_recv: inconsistent state")
   141				case sigIdle:
   142					if atomic.Cas(&sig.state, sigIdle, sigReceiving) {
   143						if GOOS == "darwin" {
   144							sigNoteSleep(&sig.note)
   145							break Receive
   146						}
   147						notetsleepg(&sig.note, -1)
   148						noteclear(&sig.note)
   149						break Receive
   150					}
   151				case sigSending:
   152					if atomic.Cas(&sig.state, sigSending, sigIdle) {
   153						break Receive
   154					}
   155				}
   156			}
   157	
   158			// Incorporate updates from sender into local copy.
   159			for i := range sig.mask {
   160				sig.recv[i] = atomic.Xchg(&sig.mask[i], 0)
   161			}
   162		}
   163	}
   164	
   165	// signalWaitUntilIdle waits until the signal delivery mechanism is idle.
   166	// This is used to ensure that we do not drop a signal notification due
   167	// to a race between disabling a signal and receiving a signal.
   168	// This assumes that signal delivery has already been disabled for
   169	// the signal(s) in question, and here we are just waiting to make sure
   170	// that all the signals have been delivered to the user channels
   171	// by the os/signal package.
   172	//go:linkname signalWaitUntilIdle os/signal.signalWaitUntilIdle
   173	func signalWaitUntilIdle() {
   174		// Although the signals we care about have been removed from
   175		// sig.wanted, it is possible that another thread has received
   176		// a signal, has read from sig.wanted, is now updating sig.mask,
   177		// and has not yet woken up the processor thread. We need to wait
   178		// until all current signal deliveries have completed.
   179		for atomic.Load(&sig.delivering) != 0 {
   180			Gosched()
   181		}
   182	
   183		// Although WaitUntilIdle seems like the right name for this
   184		// function, the state we are looking for is sigReceiving, not
   185		// sigIdle.  The sigIdle state is really more like sigProcessing.
   186		for atomic.Load(&sig.state) != sigReceiving {
   187			Gosched()
   188		}
   189	}
   190	
   191	// Must only be called from a single goroutine at a time.
   192	//go:linkname signal_enable os/signal.signal_enable
   193	func signal_enable(s uint32) {
   194		if !sig.inuse {
   195			// The first call to signal_enable is for us
   196			// to use for initialization. It does not pass
   197			// signal information in m.
   198			sig.inuse = true // enable reception of signals; cannot disable
   199			if GOOS == "darwin" {
   200				sigNoteSetup(&sig.note)
   201				return
   202			}
   203			noteclear(&sig.note)
   204			return
   205		}
   206	
   207		if s >= uint32(len(sig.wanted)*32) {
   208			return
   209		}
   210	
   211		w := sig.wanted[s/32]
   212		w |= 1 << (s & 31)
   213		atomic.Store(&sig.wanted[s/32], w)
   214	
   215		i := sig.ignored[s/32]
   216		i &^= 1 << (s & 31)
   217		atomic.Store(&sig.ignored[s/32], i)
   218	
   219		sigenable(s)
   220	}
   221	
   222	// Must only be called from a single goroutine at a time.
   223	//go:linkname signal_disable os/signal.signal_disable
   224	func signal_disable(s uint32) {
   225		if s >= uint32(len(sig.wanted)*32) {
   226			return
   227		}
   228		sigdisable(s)
   229	
   230		w := sig.wanted[s/32]
   231		w &^= 1 << (s & 31)
   232		atomic.Store(&sig.wanted[s/32], w)
   233	}
   234	
   235	// Must only be called from a single goroutine at a time.
   236	//go:linkname signal_ignore os/signal.signal_ignore
   237	func signal_ignore(s uint32) {
   238		if s >= uint32(len(sig.wanted)*32) {
   239			return
   240		}
   241		sigignore(s)
   242	
   243		w := sig.wanted[s/32]
   244		w &^= 1 << (s & 31)
   245		atomic.Store(&sig.wanted[s/32], w)
   246	
   247		i := sig.ignored[s/32]
   248		i |= 1 << (s & 31)
   249		atomic.Store(&sig.ignored[s/32], i)
   250	}
   251	
   252	// sigInitIgnored marks the signal as already ignored. This is called at
   253	// program start by initsig. In a shared library initsig is called by
   254	// libpreinit, so the runtime may not be initialized yet.
   255	//go:nosplit
   256	func sigInitIgnored(s uint32) {
   257		i := sig.ignored[s/32]
   258		i |= 1 << (s & 31)
   259		atomic.Store(&sig.ignored[s/32], i)
   260	}
   261	
   262	// Checked by signal handlers.
   263	//go:linkname signal_ignored os/signal.signal_ignored
   264	func signal_ignored(s uint32) bool {
   265		i := atomic.Load(&sig.ignored[s/32])
   266		return i&(1<<(s&31)) != 0
   267	}
   268	

View as plain text