...

Source file src/runtime/mwbbuf.go

     1	// Copyright 2017 The Go Authors. All rights reserved.
     2	// Use of this source code is governed by a BSD-style
     3	// license that can be found in the LICENSE file.
     4	
     5	// This implements the write barrier buffer. The write barrier itself
     6	// is gcWriteBarrier and is implemented in assembly.
     7	//
     8	// See mbarrier.go for algorithmic details on the write barrier. This
     9	// file deals only with the buffer.
    10	//
    11	// The write barrier has a fast path and a slow path. The fast path
    12	// simply enqueues to a per-P write barrier buffer. It's written in
    13	// assembly and doesn't clobber any general purpose registers, so it
    14	// doesn't have the usual overheads of a Go call.
    15	//
    16	// When the buffer fills up, the write barrier invokes the slow path
    17	// (wbBufFlush) to flush the buffer to the GC work queues. In this
    18	// path, since the compiler didn't spill registers, we spill *all*
    19	// registers and disallow any GC safe points that could observe the
    20	// stack frame (since we don't know the types of the spilled
    21	// registers).
    22	
    23	package runtime
    24	
    25	import (
    26		"runtime/internal/atomic"
    27		"runtime/internal/sys"
    28		"unsafe"
    29	)
    30	
    31	// testSmallBuf forces a small write barrier buffer to stress write
    32	// barrier flushing.
    33	const testSmallBuf = false
    34	
    35	// wbBuf is a per-P buffer of pointers queued by the write barrier.
    36	// This buffer is flushed to the GC workbufs when it fills up and on
    37	// various GC transitions.
    38	//
    39	// This is closely related to a "sequential store buffer" (SSB),
    40	// except that SSBs are usually used for maintaining remembered sets,
    41	// while this is used for marking.
    42	type wbBuf struct {
    43		// next points to the next slot in buf. It must not be a
    44		// pointer type because it can point past the end of buf and
    45		// must be updated without write barriers.
    46		//
    47		// This is a pointer rather than an index to optimize the
    48		// write barrier assembly.
    49		next uintptr
    50	
    51		// end points to just past the end of buf. It must not be a
    52		// pointer type because it points past the end of buf and must
    53		// be updated without write barriers.
    54		end uintptr
    55	
    56		// buf stores a series of pointers to execute write barriers
    57		// on. This must be a multiple of wbBufEntryPointers because
    58		// the write barrier only checks for overflow once per entry.
    59		buf [wbBufEntryPointers * wbBufEntries]uintptr
    60	
    61		// debugGen causes the write barrier buffer to flush after
    62		// every write barrier if equal to gcWorkPauseGen. This is for
    63		// debugging #27993. This is only set if debugCachedWork is
    64		// set.
    65		debugGen uint32
    66	}
    67	
    68	const (
    69		// wbBufEntries is the number of write barriers between
    70		// flushes of the write barrier buffer.
    71		//
    72		// This trades latency for throughput amortization. Higher
    73		// values amortize flushing overhead more, but increase the
    74		// latency of flushing. Higher values also increase the cache
    75		// footprint of the buffer.
    76		//
    77		// TODO: What is the latency cost of this? Tune this value.
    78		wbBufEntries = 256
    79	
    80		// wbBufEntryPointers is the number of pointers added to the
    81		// buffer by each write barrier.
    82		wbBufEntryPointers = 2
    83	)
    84	
    85	// reset empties b by resetting its next and end pointers.
    86	func (b *wbBuf) reset() {
    87		start := uintptr(unsafe.Pointer(&b.buf[0]))
    88		b.next = start
    89		if writeBarrier.cgo || (debugCachedWork && (throwOnGCWork || b.debugGen == atomic.Load(&gcWorkPauseGen))) {
    90			// Effectively disable the buffer by forcing a flush
    91			// on every barrier.
    92			b.end = uintptr(unsafe.Pointer(&b.buf[wbBufEntryPointers]))
    93		} else if testSmallBuf {
    94			// For testing, allow two barriers in the buffer. If
    95			// we only did one, then barriers of non-heap pointers
    96			// would be no-ops. This lets us combine a buffered
    97			// barrier with a flush at a later time.
    98			b.end = uintptr(unsafe.Pointer(&b.buf[2*wbBufEntryPointers]))
    99		} else {
   100			b.end = start + uintptr(len(b.buf))*unsafe.Sizeof(b.buf[0])
   101		}
   102	
   103		if (b.end-b.next)%(wbBufEntryPointers*unsafe.Sizeof(b.buf[0])) != 0 {
   104			throw("bad write barrier buffer bounds")
   105		}
   106	}
   107	
   108	// discard resets b's next pointer, but not its end pointer.
   109	//
   110	// This must be nosplit because it's called by wbBufFlush.
   111	//
   112	//go:nosplit
   113	func (b *wbBuf) discard() {
   114		b.next = uintptr(unsafe.Pointer(&b.buf[0]))
   115	}
   116	
   117	// empty reports whether b contains no pointers.
   118	func (b *wbBuf) empty() bool {
   119		return b.next == uintptr(unsafe.Pointer(&b.buf[0]))
   120	}
   121	
   122	// putFast adds old and new to the write barrier buffer and returns
   123	// false if a flush is necessary. Callers should use this as:
   124	//
   125	//     buf := &getg().m.p.ptr().wbBuf
   126	//     if !buf.putFast(old, new) {
   127	//         wbBufFlush(...)
   128	//     }
   129	//     ... actual memory write ...
   130	//
   131	// The arguments to wbBufFlush depend on whether the caller is doing
   132	// its own cgo pointer checks. If it is, then this can be
   133	// wbBufFlush(nil, 0). Otherwise, it must pass the slot address and
   134	// new.
   135	//
   136	// The caller must ensure there are no preemption points during the
   137	// above sequence. There must be no preemption points while buf is in
   138	// use because it is a per-P resource. There must be no preemption
   139	// points between the buffer put and the write to memory because this
   140	// could allow a GC phase change, which could result in missed write
   141	// barriers.
   142	//
   143	// putFast must be nowritebarrierrec to because write barriers here would
   144	// corrupt the write barrier buffer. It (and everything it calls, if
   145	// it called anything) has to be nosplit to avoid scheduling on to a
   146	// different P and a different buffer.
   147	//
   148	//go:nowritebarrierrec
   149	//go:nosplit
   150	func (b *wbBuf) putFast(old, new uintptr) bool {
   151		p := (*[2]uintptr)(unsafe.Pointer(b.next))
   152		p[0] = old
   153		p[1] = new
   154		b.next += 2 * sys.PtrSize
   155		return b.next != b.end
   156	}
   157	
   158	// wbBufFlush flushes the current P's write barrier buffer to the GC
   159	// workbufs. It is passed the slot and value of the write barrier that
   160	// caused the flush so that it can implement cgocheck.
   161	//
   162	// This must not have write barriers because it is part of the write
   163	// barrier implementation.
   164	//
   165	// This and everything it calls must be nosplit because 1) the stack
   166	// contains untyped slots from gcWriteBarrier and 2) there must not be
   167	// a GC safe point between the write barrier test in the caller and
   168	// flushing the buffer.
   169	//
   170	// TODO: A "go:nosplitrec" annotation would be perfect for this.
   171	//
   172	//go:nowritebarrierrec
   173	//go:nosplit
   174	func wbBufFlush(dst *uintptr, src uintptr) {
   175		// Note: Every possible return from this function must reset
   176		// the buffer's next pointer to prevent buffer overflow.
   177	
   178		// This *must not* modify its arguments because this
   179		// function's argument slots do double duty in gcWriteBarrier
   180		// as register spill slots. Currently, not modifying the
   181		// arguments is sufficient to keep the spill slots unmodified
   182		// (which seems unlikely to change since it costs little and
   183		// helps with debugging).
   184	
   185		if getg().m.dying > 0 {
   186			// We're going down. Not much point in write barriers
   187			// and this way we can allow write barriers in the
   188			// panic path.
   189			getg().m.p.ptr().wbBuf.discard()
   190			return
   191		}
   192	
   193		if writeBarrier.cgo && dst != nil {
   194			// This must be called from the stack that did the
   195			// write. It's nosplit all the way down.
   196			cgoCheckWriteBarrier(dst, src)
   197			if !writeBarrier.needed {
   198				// We were only called for cgocheck.
   199				getg().m.p.ptr().wbBuf.discard()
   200				return
   201			}
   202		}
   203	
   204		// Switch to the system stack so we don't have to worry about
   205		// the untyped stack slots or safe points.
   206		systemstack(func() {
   207			if debugCachedWork {
   208				// For debugging, include the old value of the
   209				// slot and some other data in the traceback.
   210				wbBuf := &getg().m.p.ptr().wbBuf
   211				var old uintptr
   212				if dst != nil {
   213					// dst may be nil in direct calls to wbBufFlush.
   214					old = *dst
   215				}
   216				wbBufFlush1Debug(old, wbBuf.buf[0], wbBuf.buf[1], &wbBuf.buf[0], wbBuf.next)
   217			} else {
   218				wbBufFlush1(getg().m.p.ptr())
   219			}
   220		})
   221	}
   222	
   223	// wbBufFlush1Debug is a temporary function for debugging issue
   224	// #27993. It exists solely to add some context to the traceback.
   225	//
   226	//go:nowritebarrierrec
   227	//go:systemstack
   228	//go:noinline
   229	func wbBufFlush1Debug(old, buf1, buf2 uintptr, start *uintptr, next uintptr) {
   230		wbBufFlush1(getg().m.p.ptr())
   231	}
   232	
   233	// wbBufFlush1 flushes p's write barrier buffer to the GC work queue.
   234	//
   235	// This must not have write barriers because it is part of the write
   236	// barrier implementation, so this may lead to infinite loops or
   237	// buffer corruption.
   238	//
   239	// This must be non-preemptible because it uses the P's workbuf.
   240	//
   241	//go:nowritebarrierrec
   242	//go:systemstack
   243	func wbBufFlush1(_p_ *p) {
   244		// Get the buffered pointers.
   245		start := uintptr(unsafe.Pointer(&_p_.wbBuf.buf[0]))
   246		n := (_p_.wbBuf.next - start) / unsafe.Sizeof(_p_.wbBuf.buf[0])
   247		ptrs := _p_.wbBuf.buf[:n]
   248	
   249		// Poison the buffer to make extra sure nothing is enqueued
   250		// while we're processing the buffer.
   251		_p_.wbBuf.next = 0
   252	
   253		if useCheckmark {
   254			// Slow path for checkmark mode.
   255			for _, ptr := range ptrs {
   256				shade(ptr)
   257			}
   258			_p_.wbBuf.reset()
   259			return
   260		}
   261	
   262		// Mark all of the pointers in the buffer and record only the
   263		// pointers we greyed. We use the buffer itself to temporarily
   264		// record greyed pointers.
   265		//
   266		// TODO: Should scanobject/scanblock just stuff pointers into
   267		// the wbBuf? Then this would become the sole greying path.
   268		//
   269		// TODO: We could avoid shading any of the "new" pointers in
   270		// the buffer if the stack has been shaded, or even avoid
   271		// putting them in the buffer at all (which would double its
   272		// capacity). This is slightly complicated with the buffer; we
   273		// could track whether any un-shaded goroutine has used the
   274		// buffer, or just track globally whether there are any
   275		// un-shaded stacks and flush after each stack scan.
   276		gcw := &_p_.gcw
   277		pos := 0
   278		for _, ptr := range ptrs {
   279			if ptr < minLegalPointer {
   280				// nil pointers are very common, especially
   281				// for the "old" values. Filter out these and
   282				// other "obvious" non-heap pointers ASAP.
   283				//
   284				// TODO: Should we filter out nils in the fast
   285				// path to reduce the rate of flushes?
   286				continue
   287			}
   288			obj, span, objIndex := findObject(ptr, 0, 0)
   289			if obj == 0 {
   290				continue
   291			}
   292			// TODO: Consider making two passes where the first
   293			// just prefetches the mark bits.
   294			mbits := span.markBitsForIndex(objIndex)
   295			if mbits.isMarked() {
   296				continue
   297			}
   298			mbits.setMarked()
   299			if span.spanclass.noscan() {
   300				gcw.bytesMarked += uint64(span.elemsize)
   301				continue
   302			}
   303			ptrs[pos] = obj
   304			pos++
   305		}
   306	
   307		// Enqueue the greyed objects.
   308		gcw.putBatch(ptrs[:pos])
   309	
   310		_p_.wbBuf.reset()
   311	}
   312	

View as plain text