...

Source file src/runtime/mbitmap.go

     1	// Copyright 2009 The Go Authors. All rights reserved.
     2	// Use of this source code is governed by a BSD-style
     3	// license that can be found in the LICENSE file.
     4	
     5	// Garbage collector: type and heap bitmaps.
     6	//
     7	// Stack, data, and bss bitmaps
     8	//
     9	// Stack frames and global variables in the data and bss sections are described
    10	// by 1-bit bitmaps in which 0 means uninteresting and 1 means live pointer
    11	// to be visited during GC. The bits in each byte are consumed starting with
    12	// the low bit: 1<<0, 1<<1, and so on.
    13	//
    14	// Heap bitmap
    15	//
    16	// The heap bitmap comprises 2 bits for each pointer-sized word in the heap,
    17	// stored in the heapArena metadata backing each heap arena.
    18	// That is, if ha is the heapArena for the arena starting a start,
    19	// then ha.bitmap[0] holds the 2-bit entries for the four words start
    20	// through start+3*ptrSize, ha.bitmap[1] holds the entries for
    21	// start+4*ptrSize through start+7*ptrSize, and so on.
    22	//
    23	// In each 2-bit entry, the lower bit holds the same information as in the 1-bit
    24	// bitmaps: 0 means uninteresting and 1 means live pointer to be visited during GC.
    25	// The meaning of the high bit depends on the position of the word being described
    26	// in its allocated object. In all words *except* the second word, the
    27	// high bit indicates that the object is still being described. In
    28	// these words, if a bit pair with a high bit 0 is encountered, the
    29	// low bit can also be assumed to be 0, and the object description is
    30	// over. This 00 is called the ``dead'' encoding: it signals that the
    31	// rest of the words in the object are uninteresting to the garbage
    32	// collector.
    33	//
    34	// In the second word, the high bit is the GC ``checkmarked'' bit (see below).
    35	//
    36	// The 2-bit entries are split when written into the byte, so that the top half
    37	// of the byte contains 4 high bits and the bottom half contains 4 low (pointer)
    38	// bits.
    39	// This form allows a copy from the 1-bit to the 4-bit form to keep the
    40	// pointer bits contiguous, instead of having to space them out.
    41	//
    42	// The code makes use of the fact that the zero value for a heap bitmap
    43	// has no live pointer bit set and is (depending on position), not used,
    44	// not checkmarked, and is the dead encoding.
    45	// These properties must be preserved when modifying the encoding.
    46	//
    47	// The bitmap for noscan spans is not maintained. Code must ensure
    48	// that an object is scannable before consulting its bitmap by
    49	// checking either the noscan bit in the span or by consulting its
    50	// type's information.
    51	//
    52	// Checkmarks
    53	//
    54	// In a concurrent garbage collector, one worries about failing to mark
    55	// a live object due to mutations without write barriers or bugs in the
    56	// collector implementation. As a sanity check, the GC has a 'checkmark'
    57	// mode that retraverses the object graph with the world stopped, to make
    58	// sure that everything that should be marked is marked.
    59	// In checkmark mode, in the heap bitmap, the high bit of the 2-bit entry
    60	// for the second word of the object holds the checkmark bit.
    61	// When not in checkmark mode, this bit is set to 1.
    62	//
    63	// The smallest possible allocation is 8 bytes. On a 32-bit machine, that
    64	// means every allocated object has two words, so there is room for the
    65	// checkmark bit. On a 64-bit machine, however, the 8-byte allocation is
    66	// just one word, so the second bit pair is not available for encoding the
    67	// checkmark. However, because non-pointer allocations are combined
    68	// into larger 16-byte (maxTinySize) allocations, a plain 8-byte allocation
    69	// must be a pointer, so the type bit in the first word is not actually needed.
    70	// It is still used in general, except in checkmark the type bit is repurposed
    71	// as the checkmark bit and then reinitialized (to 1) as the type bit when
    72	// finished.
    73	//
    74	
    75	package runtime
    76	
    77	import (
    78		"runtime/internal/atomic"
    79		"runtime/internal/sys"
    80		"unsafe"
    81	)
    82	
    83	const (
    84		bitPointer = 1 << 0
    85		bitScan    = 1 << 4
    86	
    87		heapBitsShift      = 1     // shift offset between successive bitPointer or bitScan entries
    88		wordsPerBitmapByte = 8 / 2 // heap words described by one bitmap byte
    89	
    90		// all scan/pointer bits in a byte
    91		bitScanAll    = bitScan | bitScan<<heapBitsShift | bitScan<<(2*heapBitsShift) | bitScan<<(3*heapBitsShift)
    92		bitPointerAll = bitPointer | bitPointer<<heapBitsShift | bitPointer<<(2*heapBitsShift) | bitPointer<<(3*heapBitsShift)
    93	)
    94	
    95	// addb returns the byte pointer p+n.
    96	//go:nowritebarrier
    97	//go:nosplit
    98	func addb(p *byte, n uintptr) *byte {
    99		// Note: wrote out full expression instead of calling add(p, n)
   100		// to reduce the number of temporaries generated by the
   101		// compiler for this trivial expression during inlining.
   102		return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) + n))
   103	}
   104	
   105	// subtractb returns the byte pointer p-n.
   106	//go:nowritebarrier
   107	//go:nosplit
   108	func subtractb(p *byte, n uintptr) *byte {
   109		// Note: wrote out full expression instead of calling add(p, -n)
   110		// to reduce the number of temporaries generated by the
   111		// compiler for this trivial expression during inlining.
   112		return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) - n))
   113	}
   114	
   115	// add1 returns the byte pointer p+1.
   116	//go:nowritebarrier
   117	//go:nosplit
   118	func add1(p *byte) *byte {
   119		// Note: wrote out full expression instead of calling addb(p, 1)
   120		// to reduce the number of temporaries generated by the
   121		// compiler for this trivial expression during inlining.
   122		return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) + 1))
   123	}
   124	
   125	// subtract1 returns the byte pointer p-1.
   126	//go:nowritebarrier
   127	//
   128	// nosplit because it is used during write barriers and must not be preempted.
   129	//go:nosplit
   130	func subtract1(p *byte) *byte {
   131		// Note: wrote out full expression instead of calling subtractb(p, 1)
   132		// to reduce the number of temporaries generated by the
   133		// compiler for this trivial expression during inlining.
   134		return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) - 1))
   135	}
   136	
   137	// heapBits provides access to the bitmap bits for a single heap word.
   138	// The methods on heapBits take value receivers so that the compiler
   139	// can more easily inline calls to those methods and registerize the
   140	// struct fields independently.
   141	type heapBits struct {
   142		bitp  *uint8
   143		shift uint32
   144		arena uint32 // Index of heap arena containing bitp
   145		last  *uint8 // Last byte arena's bitmap
   146	}
   147	
   148	// Make the compiler check that heapBits.arena is large enough to hold
   149	// the maximum arena frame number.
   150	var _ = heapBits{arena: (1<<heapAddrBits)/heapArenaBytes - 1}
   151	
   152	// markBits provides access to the mark bit for an object in the heap.
   153	// bytep points to the byte holding the mark bit.
   154	// mask is a byte with a single bit set that can be &ed with *bytep
   155	// to see if the bit has been set.
   156	// *m.byte&m.mask != 0 indicates the mark bit is set.
   157	// index can be used along with span information to generate
   158	// the address of the object in the heap.
   159	// We maintain one set of mark bits for allocation and one for
   160	// marking purposes.
   161	type markBits struct {
   162		bytep *uint8
   163		mask  uint8
   164		index uintptr
   165	}
   166	
   167	//go:nosplit
   168	func (s *mspan) allocBitsForIndex(allocBitIndex uintptr) markBits {
   169		bytep, mask := s.allocBits.bitp(allocBitIndex)
   170		return markBits{bytep, mask, allocBitIndex}
   171	}
   172	
   173	// refillAllocCache takes 8 bytes s.allocBits starting at whichByte
   174	// and negates them so that ctz (count trailing zeros) instructions
   175	// can be used. It then places these 8 bytes into the cached 64 bit
   176	// s.allocCache.
   177	func (s *mspan) refillAllocCache(whichByte uintptr) {
   178		bytes := (*[8]uint8)(unsafe.Pointer(s.allocBits.bytep(whichByte)))
   179		aCache := uint64(0)
   180		aCache |= uint64(bytes[0])
   181		aCache |= uint64(bytes[1]) << (1 * 8)
   182		aCache |= uint64(bytes[2]) << (2 * 8)
   183		aCache |= uint64(bytes[3]) << (3 * 8)
   184		aCache |= uint64(bytes[4]) << (4 * 8)
   185		aCache |= uint64(bytes[5]) << (5 * 8)
   186		aCache |= uint64(bytes[6]) << (6 * 8)
   187		aCache |= uint64(bytes[7]) << (7 * 8)
   188		s.allocCache = ^aCache
   189	}
   190	
   191	// nextFreeIndex returns the index of the next free object in s at
   192	// or after s.freeindex.
   193	// There are hardware instructions that can be used to make this
   194	// faster if profiling warrants it.
   195	func (s *mspan) nextFreeIndex() uintptr {
   196		sfreeindex := s.freeindex
   197		snelems := s.nelems
   198		if sfreeindex == snelems {
   199			return sfreeindex
   200		}
   201		if sfreeindex > snelems {
   202			throw("s.freeindex > s.nelems")
   203		}
   204	
   205		aCache := s.allocCache
   206	
   207		bitIndex := sys.Ctz64(aCache)
   208		for bitIndex == 64 {
   209			// Move index to start of next cached bits.
   210			sfreeindex = (sfreeindex + 64) &^ (64 - 1)
   211			if sfreeindex >= snelems {
   212				s.freeindex = snelems
   213				return snelems
   214			}
   215			whichByte := sfreeindex / 8
   216			// Refill s.allocCache with the next 64 alloc bits.
   217			s.refillAllocCache(whichByte)
   218			aCache = s.allocCache
   219			bitIndex = sys.Ctz64(aCache)
   220			// nothing available in cached bits
   221			// grab the next 8 bytes and try again.
   222		}
   223		result := sfreeindex + uintptr(bitIndex)
   224		if result >= snelems {
   225			s.freeindex = snelems
   226			return snelems
   227		}
   228	
   229		s.allocCache >>= uint(bitIndex + 1)
   230		sfreeindex = result + 1
   231	
   232		if sfreeindex%64 == 0 && sfreeindex != snelems {
   233			// We just incremented s.freeindex so it isn't 0.
   234			// As each 1 in s.allocCache was encountered and used for allocation
   235			// it was shifted away. At this point s.allocCache contains all 0s.
   236			// Refill s.allocCache so that it corresponds
   237			// to the bits at s.allocBits starting at s.freeindex.
   238			whichByte := sfreeindex / 8
   239			s.refillAllocCache(whichByte)
   240		}
   241		s.freeindex = sfreeindex
   242		return result
   243	}
   244	
   245	// isFree reports whether the index'th object in s is unallocated.
   246	func (s *mspan) isFree(index uintptr) bool {
   247		if index < s.freeindex {
   248			return false
   249		}
   250		bytep, mask := s.allocBits.bitp(index)
   251		return *bytep&mask == 0
   252	}
   253	
   254	func (s *mspan) objIndex(p uintptr) uintptr {
   255		byteOffset := p - s.base()
   256		if byteOffset == 0 {
   257			return 0
   258		}
   259		if s.baseMask != 0 {
   260			// s.baseMask is non-0, elemsize is a power of two, so shift by s.divShift
   261			return byteOffset >> s.divShift
   262		}
   263		return uintptr(((uint64(byteOffset) >> s.divShift) * uint64(s.divMul)) >> s.divShift2)
   264	}
   265	
   266	func markBitsForAddr(p uintptr) markBits {
   267		s := spanOf(p)
   268		objIndex := s.objIndex(p)
   269		return s.markBitsForIndex(objIndex)
   270	}
   271	
   272	func (s *mspan) markBitsForIndex(objIndex uintptr) markBits {
   273		bytep, mask := s.gcmarkBits.bitp(objIndex)
   274		return markBits{bytep, mask, objIndex}
   275	}
   276	
   277	func (s *mspan) markBitsForBase() markBits {
   278		return markBits{(*uint8)(s.gcmarkBits), uint8(1), 0}
   279	}
   280	
   281	// isMarked reports whether mark bit m is set.
   282	func (m markBits) isMarked() bool {
   283		return *m.bytep&m.mask != 0
   284	}
   285	
   286	// setMarked sets the marked bit in the markbits, atomically.
   287	func (m markBits) setMarked() {
   288		// Might be racing with other updates, so use atomic update always.
   289		// We used to be clever here and use a non-atomic update in certain
   290		// cases, but it's not worth the risk.
   291		atomic.Or8(m.bytep, m.mask)
   292	}
   293	
   294	// setMarkedNonAtomic sets the marked bit in the markbits, non-atomically.
   295	func (m markBits) setMarkedNonAtomic() {
   296		*m.bytep |= m.mask
   297	}
   298	
   299	// clearMarked clears the marked bit in the markbits, atomically.
   300	func (m markBits) clearMarked() {
   301		// Might be racing with other updates, so use atomic update always.
   302		// We used to be clever here and use a non-atomic update in certain
   303		// cases, but it's not worth the risk.
   304		atomic.And8(m.bytep, ^m.mask)
   305	}
   306	
   307	// markBitsForSpan returns the markBits for the span base address base.
   308	func markBitsForSpan(base uintptr) (mbits markBits) {
   309		mbits = markBitsForAddr(base)
   310		if mbits.mask != 1 {
   311			throw("markBitsForSpan: unaligned start")
   312		}
   313		return mbits
   314	}
   315	
   316	// advance advances the markBits to the next object in the span.
   317	func (m *markBits) advance() {
   318		if m.mask == 1<<7 {
   319			m.bytep = (*uint8)(unsafe.Pointer(uintptr(unsafe.Pointer(m.bytep)) + 1))
   320			m.mask = 1
   321		} else {
   322			m.mask = m.mask << 1
   323		}
   324		m.index++
   325	}
   326	
   327	// heapBitsForAddr returns the heapBits for the address addr.
   328	// The caller must ensure addr is in an allocated span.
   329	// In particular, be careful not to point past the end of an object.
   330	//
   331	// nosplit because it is used during write barriers and must not be preempted.
   332	//go:nosplit
   333	func heapBitsForAddr(addr uintptr) (h heapBits) {
   334		// 2 bits per word, 4 pairs per byte, and a mask is hard coded.
   335		arena := arenaIndex(addr)
   336		ha := mheap_.arenas[arena.l1()][arena.l2()]
   337		// The compiler uses a load for nil checking ha, but in this
   338		// case we'll almost never hit that cache line again, so it
   339		// makes more sense to do a value check.
   340		if ha == nil {
   341			// addr is not in the heap. Return nil heapBits, which
   342			// we expect to crash in the caller.
   343			return
   344		}
   345		h.bitp = &ha.bitmap[(addr/(sys.PtrSize*4))%heapArenaBitmapBytes]
   346		h.shift = uint32((addr / sys.PtrSize) & 3)
   347		h.arena = uint32(arena)
   348		h.last = &ha.bitmap[len(ha.bitmap)-1]
   349		return
   350	}
   351	
   352	// findObject returns the base address for the heap object containing
   353	// the address p, the object's span, and the index of the object in s.
   354	// If p does not point into a heap object, it returns base == 0.
   355	//
   356	// If p points is an invalid heap pointer and debug.invalidptr != 0,
   357	// findObject panics.
   358	//
   359	// refBase and refOff optionally give the base address of the object
   360	// in which the pointer p was found and the byte offset at which it
   361	// was found. These are used for error reporting.
   362	func findObject(p, refBase, refOff uintptr) (base uintptr, s *mspan, objIndex uintptr) {
   363		s = spanOf(p)
   364		// If p is a bad pointer, it may not be in s's bounds.
   365		if s == nil || p < s.base() || p >= s.limit || s.state != mSpanInUse {
   366			if s == nil || s.state == mSpanManual {
   367				// If s is nil, the virtual address has never been part of the heap.
   368				// This pointer may be to some mmap'd region, so we allow it.
   369				// Pointers into stacks are also ok, the runtime manages these explicitly.
   370				return
   371			}
   372	
   373			// The following ensures that we are rigorous about what data
   374			// structures hold valid pointers.
   375			if debug.invalidptr != 0 {
   376				// Typically this indicates an incorrect use
   377				// of unsafe or cgo to store a bad pointer in
   378				// the Go heap. It may also indicate a runtime
   379				// bug.
   380				//
   381				// TODO(austin): We could be more aggressive
   382				// and detect pointers to unallocated objects
   383				// in allocated spans.
   384				printlock()
   385				print("runtime: pointer ", hex(p))
   386				if s.state != mSpanInUse {
   387					print(" to unallocated span")
   388				} else {
   389					print(" to unused region of span")
   390				}
   391				print(" span.base()=", hex(s.base()), " span.limit=", hex(s.limit), " span.state=", s.state, "\n")
   392				if refBase != 0 {
   393					print("runtime: found in object at *(", hex(refBase), "+", hex(refOff), ")\n")
   394					gcDumpObject("object", refBase, refOff)
   395				}
   396				getg().m.traceback = 2
   397				throw("found bad pointer in Go heap (incorrect use of unsafe or cgo?)")
   398			}
   399			return
   400		}
   401		// If this span holds object of a power of 2 size, just mask off the bits to
   402		// the interior of the object. Otherwise use the size to get the base.
   403		if s.baseMask != 0 {
   404			// optimize for power of 2 sized objects.
   405			base = s.base()
   406			base = base + (p-base)&uintptr(s.baseMask)
   407			objIndex = (base - s.base()) >> s.divShift
   408			// base = p & s.baseMask is faster for small spans,
   409			// but doesn't work for large spans.
   410			// Overall, it's faster to use the more general computation above.
   411		} else {
   412			base = s.base()
   413			if p-base >= s.elemsize {
   414				// n := (p - base) / s.elemsize, using division by multiplication
   415				objIndex = uintptr(p-base) >> s.divShift * uintptr(s.divMul) >> s.divShift2
   416				base += objIndex * s.elemsize
   417			}
   418		}
   419		return
   420	}
   421	
   422	// next returns the heapBits describing the next pointer-sized word in memory.
   423	// That is, if h describes address p, h.next() describes p+ptrSize.
   424	// Note that next does not modify h. The caller must record the result.
   425	//
   426	// nosplit because it is used during write barriers and must not be preempted.
   427	//go:nosplit
   428	func (h heapBits) next() heapBits {
   429		if h.shift < 3*heapBitsShift {
   430			h.shift += heapBitsShift
   431		} else if h.bitp != h.last {
   432			h.bitp, h.shift = add1(h.bitp), 0
   433		} else {
   434			// Move to the next arena.
   435			return h.nextArena()
   436		}
   437		return h
   438	}
   439	
   440	// nextArena advances h to the beginning of the next heap arena.
   441	//
   442	// This is a slow-path helper to next. gc's inliner knows that
   443	// heapBits.next can be inlined even though it calls this. This is
   444	// marked noinline so it doesn't get inlined into next and cause next
   445	// to be too big to inline.
   446	//
   447	//go:nosplit
   448	//go:noinline
   449	func (h heapBits) nextArena() heapBits {
   450		h.arena++
   451		ai := arenaIdx(h.arena)
   452		l2 := mheap_.arenas[ai.l1()]
   453		if l2 == nil {
   454			// We just passed the end of the object, which
   455			// was also the end of the heap. Poison h. It
   456			// should never be dereferenced at this point.
   457			return heapBits{}
   458		}
   459		ha := l2[ai.l2()]
   460		if ha == nil {
   461			return heapBits{}
   462		}
   463		h.bitp, h.shift = &ha.bitmap[0], 0
   464		h.last = &ha.bitmap[len(ha.bitmap)-1]
   465		return h
   466	}
   467	
   468	// forward returns the heapBits describing n pointer-sized words ahead of h in memory.
   469	// That is, if h describes address p, h.forward(n) describes p+n*ptrSize.
   470	// h.forward(1) is equivalent to h.next(), just slower.
   471	// Note that forward does not modify h. The caller must record the result.
   472	// bits returns the heap bits for the current word.
   473	//go:nosplit
   474	func (h heapBits) forward(n uintptr) heapBits {
   475		n += uintptr(h.shift) / heapBitsShift
   476		nbitp := uintptr(unsafe.Pointer(h.bitp)) + n/4
   477		h.shift = uint32(n%4) * heapBitsShift
   478		if nbitp <= uintptr(unsafe.Pointer(h.last)) {
   479			h.bitp = (*uint8)(unsafe.Pointer(nbitp))
   480			return h
   481		}
   482	
   483		// We're in a new heap arena.
   484		past := nbitp - (uintptr(unsafe.Pointer(h.last)) + 1)
   485		h.arena += 1 + uint32(past/heapArenaBitmapBytes)
   486		ai := arenaIdx(h.arena)
   487		if l2 := mheap_.arenas[ai.l1()]; l2 != nil && l2[ai.l2()] != nil {
   488			a := l2[ai.l2()]
   489			h.bitp = &a.bitmap[past%heapArenaBitmapBytes]
   490			h.last = &a.bitmap[len(a.bitmap)-1]
   491		} else {
   492			h.bitp, h.last = nil, nil
   493		}
   494		return h
   495	}
   496	
   497	// forwardOrBoundary is like forward, but stops at boundaries between
   498	// contiguous sections of the bitmap. It returns the number of words
   499	// advanced over, which will be <= n.
   500	func (h heapBits) forwardOrBoundary(n uintptr) (heapBits, uintptr) {
   501		maxn := 4 * ((uintptr(unsafe.Pointer(h.last)) + 1) - uintptr(unsafe.Pointer(h.bitp)))
   502		if n > maxn {
   503			n = maxn
   504		}
   505		return h.forward(n), n
   506	}
   507	
   508	// The caller can test morePointers and isPointer by &-ing with bitScan and bitPointer.
   509	// The result includes in its higher bits the bits for subsequent words
   510	// described by the same bitmap byte.
   511	//
   512	// nosplit because it is used during write barriers and must not be preempted.
   513	//go:nosplit
   514	func (h heapBits) bits() uint32 {
   515		// The (shift & 31) eliminates a test and conditional branch
   516		// from the generated code.
   517		return uint32(*h.bitp) >> (h.shift & 31)
   518	}
   519	
   520	// morePointers reports whether this word and all remaining words in this object
   521	// are scalars.
   522	// h must not describe the second word of the object.
   523	func (h heapBits) morePointers() bool {
   524		return h.bits()&bitScan != 0
   525	}
   526	
   527	// isPointer reports whether the heap bits describe a pointer word.
   528	//
   529	// nosplit because it is used during write barriers and must not be preempted.
   530	//go:nosplit
   531	func (h heapBits) isPointer() bool {
   532		return h.bits()&bitPointer != 0
   533	}
   534	
   535	// isCheckmarked reports whether the heap bits have the checkmarked bit set.
   536	// It must be told how large the object at h is, because the encoding of the
   537	// checkmark bit varies by size.
   538	// h must describe the initial word of the object.
   539	func (h heapBits) isCheckmarked(size uintptr) bool {
   540		if size == sys.PtrSize {
   541			return (*h.bitp>>h.shift)&bitPointer != 0
   542		}
   543		// All multiword objects are 2-word aligned,
   544		// so we know that the initial word's 2-bit pair
   545		// and the second word's 2-bit pair are in the
   546		// same heap bitmap byte, *h.bitp.
   547		return (*h.bitp>>(heapBitsShift+h.shift))&bitScan != 0
   548	}
   549	
   550	// setCheckmarked sets the checkmarked bit.
   551	// It must be told how large the object at h is, because the encoding of the
   552	// checkmark bit varies by size.
   553	// h must describe the initial word of the object.
   554	func (h heapBits) setCheckmarked(size uintptr) {
   555		if size == sys.PtrSize {
   556			atomic.Or8(h.bitp, bitPointer<<h.shift)
   557			return
   558		}
   559		atomic.Or8(h.bitp, bitScan<<(heapBitsShift+h.shift))
   560	}
   561	
   562	// bulkBarrierPreWrite executes a write barrier
   563	// for every pointer slot in the memory range [src, src+size),
   564	// using pointer/scalar information from [dst, dst+size).
   565	// This executes the write barriers necessary before a memmove.
   566	// src, dst, and size must be pointer-aligned.
   567	// The range [dst, dst+size) must lie within a single object.
   568	// It does not perform the actual writes.
   569	//
   570	// As a special case, src == 0 indicates that this is being used for a
   571	// memclr. bulkBarrierPreWrite will pass 0 for the src of each write
   572	// barrier.
   573	//
   574	// Callers should call bulkBarrierPreWrite immediately before
   575	// calling memmove(dst, src, size). This function is marked nosplit
   576	// to avoid being preempted; the GC must not stop the goroutine
   577	// between the memmove and the execution of the barriers.
   578	// The caller is also responsible for cgo pointer checks if this
   579	// may be writing Go pointers into non-Go memory.
   580	//
   581	// The pointer bitmap is not maintained for allocations containing
   582	// no pointers at all; any caller of bulkBarrierPreWrite must first
   583	// make sure the underlying allocation contains pointers, usually
   584	// by checking typ.ptrdata.
   585	//
   586	// Callers must perform cgo checks if writeBarrier.cgo.
   587	//
   588	//go:nosplit
   589	func bulkBarrierPreWrite(dst, src, size uintptr) {
   590		if (dst|src|size)&(sys.PtrSize-1) != 0 {
   591			throw("bulkBarrierPreWrite: unaligned arguments")
   592		}
   593		if !writeBarrier.needed {
   594			return
   595		}
   596		if s := spanOf(dst); s == nil {
   597			// If dst is a global, use the data or BSS bitmaps to
   598			// execute write barriers.
   599			for _, datap := range activeModules() {
   600				if datap.data <= dst && dst < datap.edata {
   601					bulkBarrierBitmap(dst, src, size, dst-datap.data, datap.gcdatamask.bytedata)
   602					return
   603				}
   604			}
   605			for _, datap := range activeModules() {
   606				if datap.bss <= dst && dst < datap.ebss {
   607					bulkBarrierBitmap(dst, src, size, dst-datap.bss, datap.gcbssmask.bytedata)
   608					return
   609				}
   610			}
   611			return
   612		} else if s.state != mSpanInUse || dst < s.base() || s.limit <= dst {
   613			// dst was heap memory at some point, but isn't now.
   614			// It can't be a global. It must be either our stack,
   615			// or in the case of direct channel sends, it could be
   616			// another stack. Either way, no need for barriers.
   617			// This will also catch if dst is in a freed span,
   618			// though that should never have.
   619			return
   620		}
   621	
   622		buf := &getg().m.p.ptr().wbBuf
   623		h := heapBitsForAddr(dst)
   624		if src == 0 {
   625			for i := uintptr(0); i < size; i += sys.PtrSize {
   626				if h.isPointer() {
   627					dstx := (*uintptr)(unsafe.Pointer(dst + i))
   628					if !buf.putFast(*dstx, 0) {
   629						wbBufFlush(nil, 0)
   630					}
   631				}
   632				h = h.next()
   633			}
   634		} else {
   635			for i := uintptr(0); i < size; i += sys.PtrSize {
   636				if h.isPointer() {
   637					dstx := (*uintptr)(unsafe.Pointer(dst + i))
   638					srcx := (*uintptr)(unsafe.Pointer(src + i))
   639					if !buf.putFast(*dstx, *srcx) {
   640						wbBufFlush(nil, 0)
   641					}
   642				}
   643				h = h.next()
   644			}
   645		}
   646	}
   647	
   648	// bulkBarrierPreWriteSrcOnly is like bulkBarrierPreWrite but
   649	// does not execute write barriers for [dst, dst+size).
   650	//
   651	// In addition to the requirements of bulkBarrierPreWrite
   652	// callers need to ensure [dst, dst+size) is zeroed.
   653	//
   654	// This is used for special cases where e.g. dst was just
   655	// created and zeroed with malloc.
   656	//go:nosplit
   657	func bulkBarrierPreWriteSrcOnly(dst, src, size uintptr) {
   658		if (dst|src|size)&(sys.PtrSize-1) != 0 {
   659			throw("bulkBarrierPreWrite: unaligned arguments")
   660		}
   661		if !writeBarrier.needed {
   662			return
   663		}
   664		buf := &getg().m.p.ptr().wbBuf
   665		h := heapBitsForAddr(dst)
   666		for i := uintptr(0); i < size; i += sys.PtrSize {
   667			if h.isPointer() {
   668				srcx := (*uintptr)(unsafe.Pointer(src + i))
   669				if !buf.putFast(0, *srcx) {
   670					wbBufFlush(nil, 0)
   671				}
   672			}
   673			h = h.next()
   674		}
   675	}
   676	
   677	// bulkBarrierBitmap executes write barriers for copying from [src,
   678	// src+size) to [dst, dst+size) using a 1-bit pointer bitmap. src is
   679	// assumed to start maskOffset bytes into the data covered by the
   680	// bitmap in bits (which may not be a multiple of 8).
   681	//
   682	// This is used by bulkBarrierPreWrite for writes to data and BSS.
   683	//
   684	//go:nosplit
   685	func bulkBarrierBitmap(dst, src, size, maskOffset uintptr, bits *uint8) {
   686		word := maskOffset / sys.PtrSize
   687		bits = addb(bits, word/8)
   688		mask := uint8(1) << (word % 8)
   689	
   690		buf := &getg().m.p.ptr().wbBuf
   691		for i := uintptr(0); i < size; i += sys.PtrSize {
   692			if mask == 0 {
   693				bits = addb(bits, 1)
   694				if *bits == 0 {
   695					// Skip 8 words.
   696					i += 7 * sys.PtrSize
   697					continue
   698				}
   699				mask = 1
   700			}
   701			if *bits&mask != 0 {
   702				dstx := (*uintptr)(unsafe.Pointer(dst + i))
   703				if src == 0 {
   704					if !buf.putFast(*dstx, 0) {
   705						wbBufFlush(nil, 0)
   706					}
   707				} else {
   708					srcx := (*uintptr)(unsafe.Pointer(src + i))
   709					if !buf.putFast(*dstx, *srcx) {
   710						wbBufFlush(nil, 0)
   711					}
   712				}
   713			}
   714			mask <<= 1
   715		}
   716	}
   717	
   718	// typeBitsBulkBarrier executes a write barrier for every
   719	// pointer that would be copied from [src, src+size) to [dst,
   720	// dst+size) by a memmove using the type bitmap to locate those
   721	// pointer slots.
   722	//
   723	// The type typ must correspond exactly to [src, src+size) and [dst, dst+size).
   724	// dst, src, and size must be pointer-aligned.
   725	// The type typ must have a plain bitmap, not a GC program.
   726	// The only use of this function is in channel sends, and the
   727	// 64 kB channel element limit takes care of this for us.
   728	//
   729	// Must not be preempted because it typically runs right before memmove,
   730	// and the GC must observe them as an atomic action.
   731	//
   732	// Callers must perform cgo checks if writeBarrier.cgo.
   733	//
   734	//go:nosplit
   735	func typeBitsBulkBarrier(typ *_type, dst, src, size uintptr) {
   736		if typ == nil {
   737			throw("runtime: typeBitsBulkBarrier without type")
   738		}
   739		if typ.size != size {
   740			println("runtime: typeBitsBulkBarrier with type ", typ.string(), " of size ", typ.size, " but memory size", size)
   741			throw("runtime: invalid typeBitsBulkBarrier")
   742		}
   743		if typ.kind&kindGCProg != 0 {
   744			println("runtime: typeBitsBulkBarrier with type ", typ.string(), " with GC prog")
   745			throw("runtime: invalid typeBitsBulkBarrier")
   746		}
   747		if !writeBarrier.needed {
   748			return
   749		}
   750		ptrmask := typ.gcdata
   751		buf := &getg().m.p.ptr().wbBuf
   752		var bits uint32
   753		for i := uintptr(0); i < typ.ptrdata; i += sys.PtrSize {
   754			if i&(sys.PtrSize*8-1) == 0 {
   755				bits = uint32(*ptrmask)
   756				ptrmask = addb(ptrmask, 1)
   757			} else {
   758				bits = bits >> 1
   759			}
   760			if bits&1 != 0 {
   761				dstx := (*uintptr)(unsafe.Pointer(dst + i))
   762				srcx := (*uintptr)(unsafe.Pointer(src + i))
   763				if !buf.putFast(*dstx, *srcx) {
   764					wbBufFlush(nil, 0)
   765				}
   766			}
   767		}
   768	}
   769	
   770	// The methods operating on spans all require that h has been returned
   771	// by heapBitsForSpan and that size, n, total are the span layout description
   772	// returned by the mspan's layout method.
   773	// If total > size*n, it means that there is extra leftover memory in the span,
   774	// usually due to rounding.
   775	//
   776	// TODO(rsc): Perhaps introduce a different heapBitsSpan type.
   777	
   778	// initSpan initializes the heap bitmap for a span.
   779	// It clears all checkmark bits.
   780	// If this is a span of pointer-sized objects, it initializes all
   781	// words to pointer/scan.
   782	// Otherwise, it initializes all words to scalar/dead.
   783	func (h heapBits) initSpan(s *mspan) {
   784		size, n, total := s.layout()
   785	
   786		// Init the markbit structures
   787		s.freeindex = 0
   788		s.allocCache = ^uint64(0) // all 1s indicating all free.
   789		s.nelems = n
   790		s.allocBits = nil
   791		s.gcmarkBits = nil
   792		s.gcmarkBits = newMarkBits(s.nelems)
   793		s.allocBits = newAllocBits(s.nelems)
   794	
   795		// Clear bits corresponding to objects.
   796		nw := total / sys.PtrSize
   797		if nw%wordsPerBitmapByte != 0 {
   798			throw("initSpan: unaligned length")
   799		}
   800		if h.shift != 0 {
   801			throw("initSpan: unaligned base")
   802		}
   803		for nw > 0 {
   804			hNext, anw := h.forwardOrBoundary(nw)
   805			nbyte := anw / wordsPerBitmapByte
   806			if sys.PtrSize == 8 && size == sys.PtrSize {
   807				bitp := h.bitp
   808				for i := uintptr(0); i < nbyte; i++ {
   809					*bitp = bitPointerAll | bitScanAll
   810					bitp = add1(bitp)
   811				}
   812			} else {
   813				memclrNoHeapPointers(unsafe.Pointer(h.bitp), nbyte)
   814			}
   815			h = hNext
   816			nw -= anw
   817		}
   818	}
   819	
   820	// initCheckmarkSpan initializes a span for being checkmarked.
   821	// It clears the checkmark bits, which are set to 1 in normal operation.
   822	func (h heapBits) initCheckmarkSpan(size, n, total uintptr) {
   823		// The ptrSize == 8 is a compile-time constant false on 32-bit and eliminates this code entirely.
   824		if sys.PtrSize == 8 && size == sys.PtrSize {
   825			// Checkmark bit is type bit, bottom bit of every 2-bit entry.
   826			// Only possible on 64-bit system, since minimum size is 8.
   827			// Must clear type bit (checkmark bit) of every word.
   828			// The type bit is the lower of every two-bit pair.
   829			for i := uintptr(0); i < n; i += wordsPerBitmapByte {
   830				*h.bitp &^= bitPointerAll
   831				h = h.forward(wordsPerBitmapByte)
   832			}
   833			return
   834		}
   835		for i := uintptr(0); i < n; i++ {
   836			*h.bitp &^= bitScan << (heapBitsShift + h.shift)
   837			h = h.forward(size / sys.PtrSize)
   838		}
   839	}
   840	
   841	// clearCheckmarkSpan undoes all the checkmarking in a span.
   842	// The actual checkmark bits are ignored, so the only work to do
   843	// is to fix the pointer bits. (Pointer bits are ignored by scanobject
   844	// but consulted by typedmemmove.)
   845	func (h heapBits) clearCheckmarkSpan(size, n, total uintptr) {
   846		// The ptrSize == 8 is a compile-time constant false on 32-bit and eliminates this code entirely.
   847		if sys.PtrSize == 8 && size == sys.PtrSize {
   848			// Checkmark bit is type bit, bottom bit of every 2-bit entry.
   849			// Only possible on 64-bit system, since minimum size is 8.
   850			// Must clear type bit (checkmark bit) of every word.
   851			// The type bit is the lower of every two-bit pair.
   852			for i := uintptr(0); i < n; i += wordsPerBitmapByte {
   853				*h.bitp |= bitPointerAll
   854				h = h.forward(wordsPerBitmapByte)
   855			}
   856		}
   857	}
   858	
   859	// oneBitCount is indexed by byte and produces the
   860	// number of 1 bits in that byte. For example 128 has 1 bit set
   861	// and oneBitCount[128] will holds 1.
   862	var oneBitCount = [256]uint8{
   863		0, 1, 1, 2, 1, 2, 2, 3,
   864		1, 2, 2, 3, 2, 3, 3, 4,
   865		1, 2, 2, 3, 2, 3, 3, 4,
   866		2, 3, 3, 4, 3, 4, 4, 5,
   867		1, 2, 2, 3, 2, 3, 3, 4,
   868		2, 3, 3, 4, 3, 4, 4, 5,
   869		2, 3, 3, 4, 3, 4, 4, 5,
   870		3, 4, 4, 5, 4, 5, 5, 6,
   871		1, 2, 2, 3, 2, 3, 3, 4,
   872		2, 3, 3, 4, 3, 4, 4, 5,
   873		2, 3, 3, 4, 3, 4, 4, 5,
   874		3, 4, 4, 5, 4, 5, 5, 6,
   875		2, 3, 3, 4, 3, 4, 4, 5,
   876		3, 4, 4, 5, 4, 5, 5, 6,
   877		3, 4, 4, 5, 4, 5, 5, 6,
   878		4, 5, 5, 6, 5, 6, 6, 7,
   879		1, 2, 2, 3, 2, 3, 3, 4,
   880		2, 3, 3, 4, 3, 4, 4, 5,
   881		2, 3, 3, 4, 3, 4, 4, 5,
   882		3, 4, 4, 5, 4, 5, 5, 6,
   883		2, 3, 3, 4, 3, 4, 4, 5,
   884		3, 4, 4, 5, 4, 5, 5, 6,
   885		3, 4, 4, 5, 4, 5, 5, 6,
   886		4, 5, 5, 6, 5, 6, 6, 7,
   887		2, 3, 3, 4, 3, 4, 4, 5,
   888		3, 4, 4, 5, 4, 5, 5, 6,
   889		3, 4, 4, 5, 4, 5, 5, 6,
   890		4, 5, 5, 6, 5, 6, 6, 7,
   891		3, 4, 4, 5, 4, 5, 5, 6,
   892		4, 5, 5, 6, 5, 6, 6, 7,
   893		4, 5, 5, 6, 5, 6, 6, 7,
   894		5, 6, 6, 7, 6, 7, 7, 8}
   895	
   896	// countAlloc returns the number of objects allocated in span s by
   897	// scanning the allocation bitmap.
   898	// TODO:(rlh) Use popcount intrinsic.
   899	func (s *mspan) countAlloc() int {
   900		count := 0
   901		maxIndex := s.nelems / 8
   902		for i := uintptr(0); i < maxIndex; i++ {
   903			mrkBits := *s.gcmarkBits.bytep(i)
   904			count += int(oneBitCount[mrkBits])
   905		}
   906		if bitsInLastByte := s.nelems % 8; bitsInLastByte != 0 {
   907			mrkBits := *s.gcmarkBits.bytep(maxIndex)
   908			mask := uint8((1 << bitsInLastByte) - 1)
   909			bits := mrkBits & mask
   910			count += int(oneBitCount[bits])
   911		}
   912		return count
   913	}
   914	
   915	// heapBitsSetType records that the new allocation [x, x+size)
   916	// holds in [x, x+dataSize) one or more values of type typ.
   917	// (The number of values is given by dataSize / typ.size.)
   918	// If dataSize < size, the fragment [x+dataSize, x+size) is
   919	// recorded as non-pointer data.
   920	// It is known that the type has pointers somewhere;
   921	// malloc does not call heapBitsSetType when there are no pointers,
   922	// because all free objects are marked as noscan during
   923	// heapBitsSweepSpan.
   924	//
   925	// There can only be one allocation from a given span active at a time,
   926	// and the bitmap for a span always falls on byte boundaries,
   927	// so there are no write-write races for access to the heap bitmap.
   928	// Hence, heapBitsSetType can access the bitmap without atomics.
   929	//
   930	// There can be read-write races between heapBitsSetType and things
   931	// that read the heap bitmap like scanobject. However, since
   932	// heapBitsSetType is only used for objects that have not yet been
   933	// made reachable, readers will ignore bits being modified by this
   934	// function. This does mean this function cannot transiently modify
   935	// bits that belong to neighboring objects. Also, on weakly-ordered
   936	// machines, callers must execute a store/store (publication) barrier
   937	// between calling this function and making the object reachable.
   938	func heapBitsSetType(x, size, dataSize uintptr, typ *_type) {
   939		const doubleCheck = false // slow but helpful; enable to test modifications to this code
   940	
   941		// dataSize is always size rounded up to the next malloc size class,
   942		// except in the case of allocating a defer block, in which case
   943		// size is sizeof(_defer{}) (at least 6 words) and dataSize may be
   944		// arbitrarily larger.
   945		//
   946		// The checks for size == sys.PtrSize and size == 2*sys.PtrSize can therefore
   947		// assume that dataSize == size without checking it explicitly.
   948	
   949		if sys.PtrSize == 8 && size == sys.PtrSize {
   950			// It's one word and it has pointers, it must be a pointer.
   951			// Since all allocated one-word objects are pointers
   952			// (non-pointers are aggregated into tinySize allocations),
   953			// initSpan sets the pointer bits for us. Nothing to do here.
   954			if doubleCheck {
   955				h := heapBitsForAddr(x)
   956				if !h.isPointer() {
   957					throw("heapBitsSetType: pointer bit missing")
   958				}
   959				if !h.morePointers() {
   960					throw("heapBitsSetType: scan bit missing")
   961				}
   962			}
   963			return
   964		}
   965	
   966		h := heapBitsForAddr(x)
   967		ptrmask := typ.gcdata // start of 1-bit pointer mask (or GC program, handled below)
   968	
   969		// Heap bitmap bits for 2-word object are only 4 bits,
   970		// so also shared with objects next to it.
   971		// This is called out as a special case primarily for 32-bit systems,
   972		// so that on 32-bit systems the code below can assume all objects
   973		// are 4-word aligned (because they're all 16-byte aligned).
   974		if size == 2*sys.PtrSize {
   975			if typ.size == sys.PtrSize {
   976				// We're allocating a block big enough to hold two pointers.
   977				// On 64-bit, that means the actual object must be two pointers,
   978				// or else we'd have used the one-pointer-sized block.
   979				// On 32-bit, however, this is the 8-byte block, the smallest one.
   980				// So it could be that we're allocating one pointer and this was
   981				// just the smallest block available. Distinguish by checking dataSize.
   982				// (In general the number of instances of typ being allocated is
   983				// dataSize/typ.size.)
   984				if sys.PtrSize == 4 && dataSize == sys.PtrSize {
   985					// 1 pointer object. On 32-bit machines clear the bit for the
   986					// unused second word.
   987					*h.bitp &^= (bitPointer | bitScan | ((bitPointer | bitScan) << heapBitsShift)) << h.shift
   988					*h.bitp |= (bitPointer | bitScan) << h.shift
   989				} else {
   990					// 2-element slice of pointer.
   991					*h.bitp |= (bitPointer | bitScan | bitPointer<<heapBitsShift) << h.shift
   992				}
   993				return
   994			}
   995			// Otherwise typ.size must be 2*sys.PtrSize,
   996			// and typ.kind&kindGCProg == 0.
   997			if doubleCheck {
   998				if typ.size != 2*sys.PtrSize || typ.kind&kindGCProg != 0 {
   999					print("runtime: heapBitsSetType size=", size, " but typ.size=", typ.size, " gcprog=", typ.kind&kindGCProg != 0, "\n")
  1000					throw("heapBitsSetType")
  1001				}
  1002			}
  1003			b := uint32(*ptrmask)
  1004			hb := (b & 3) | bitScan
  1005			// bitPointer == 1, bitScan is 1 << 4, heapBitsShift is 1.
  1006			// 110011 is shifted h.shift and complemented.
  1007			// This clears out the bits that are about to be
  1008			// ored into *h.hbitp in the next instructions.
  1009			*h.bitp &^= (bitPointer | bitScan | ((bitPointer | bitScan) << heapBitsShift)) << h.shift
  1010			*h.bitp |= uint8(hb << h.shift)
  1011			return
  1012		}
  1013	
  1014		// Copy from 1-bit ptrmask into 2-bit bitmap.
  1015		// The basic approach is to use a single uintptr as a bit buffer,
  1016		// alternating between reloading the buffer and writing bitmap bytes.
  1017		// In general, one load can supply two bitmap byte writes.
  1018		// This is a lot of lines of code, but it compiles into relatively few
  1019		// machine instructions.
  1020	
  1021		outOfPlace := false
  1022		if arenaIndex(x+size-1) != arenaIdx(h.arena) || (doubleCheck && fastrand()%2 == 0) {
  1023			// This object spans heap arenas, so the bitmap may be
  1024			// discontiguous. Unroll it into the object instead
  1025			// and then copy it out.
  1026			//
  1027			// In doubleCheck mode, we randomly do this anyway to
  1028			// stress test the bitmap copying path.
  1029			outOfPlace = true
  1030			h.bitp = (*uint8)(unsafe.Pointer(x))
  1031			h.last = nil
  1032		}
  1033	
  1034		var (
  1035			// Ptrmask input.
  1036			p     *byte   // last ptrmask byte read
  1037			b     uintptr // ptrmask bits already loaded
  1038			nb    uintptr // number of bits in b at next read
  1039			endp  *byte   // final ptrmask byte to read (then repeat)
  1040			endnb uintptr // number of valid bits in *endp
  1041			pbits uintptr // alternate source of bits
  1042	
  1043			// Heap bitmap output.
  1044			w     uintptr // words processed
  1045			nw    uintptr // number of words to process
  1046			hbitp *byte   // next heap bitmap byte to write
  1047			hb    uintptr // bits being prepared for *hbitp
  1048		)
  1049	
  1050		hbitp = h.bitp
  1051	
  1052		// Handle GC program. Delayed until this part of the code
  1053		// so that we can use the same double-checking mechanism
  1054		// as the 1-bit case. Nothing above could have encountered
  1055		// GC programs: the cases were all too small.
  1056		if typ.kind&kindGCProg != 0 {
  1057			heapBitsSetTypeGCProg(h, typ.ptrdata, typ.size, dataSize, size, addb(typ.gcdata, 4))
  1058			if doubleCheck {
  1059				// Double-check the heap bits written by GC program
  1060				// by running the GC program to create a 1-bit pointer mask
  1061				// and then jumping to the double-check code below.
  1062				// This doesn't catch bugs shared between the 1-bit and 4-bit
  1063				// GC program execution, but it does catch mistakes specific
  1064				// to just one of those and bugs in heapBitsSetTypeGCProg's
  1065				// implementation of arrays.
  1066				lock(&debugPtrmask.lock)
  1067				if debugPtrmask.data == nil {
  1068					debugPtrmask.data = (*byte)(persistentalloc(1<<20, 1, &memstats.other_sys))
  1069				}
  1070				ptrmask = debugPtrmask.data
  1071				runGCProg(addb(typ.gcdata, 4), nil, ptrmask, 1)
  1072			}
  1073			goto Phase4
  1074		}
  1075	
  1076		// Note about sizes:
  1077		//
  1078		// typ.size is the number of words in the object,
  1079		// and typ.ptrdata is the number of words in the prefix
  1080		// of the object that contains pointers. That is, the final
  1081		// typ.size - typ.ptrdata words contain no pointers.
  1082		// This allows optimization of a common pattern where
  1083		// an object has a small header followed by a large scalar
  1084		// buffer. If we know the pointers are over, we don't have
  1085		// to scan the buffer's heap bitmap at all.
  1086		// The 1-bit ptrmasks are sized to contain only bits for
  1087		// the typ.ptrdata prefix, zero padded out to a full byte
  1088		// of bitmap. This code sets nw (below) so that heap bitmap
  1089		// bits are only written for the typ.ptrdata prefix; if there is
  1090		// more room in the allocated object, the next heap bitmap
  1091		// entry is a 00, indicating that there are no more pointers
  1092		// to scan. So only the ptrmask for the ptrdata bytes is needed.
  1093		//
  1094		// Replicated copies are not as nice: if there is an array of
  1095		// objects with scalar tails, all but the last tail does have to
  1096		// be initialized, because there is no way to say "skip forward".
  1097		// However, because of the possibility of a repeated type with
  1098		// size not a multiple of 4 pointers (one heap bitmap byte),
  1099		// the code already must handle the last ptrmask byte specially
  1100		// by treating it as containing only the bits for endnb pointers,
  1101		// where endnb <= 4. We represent large scalar tails that must
  1102		// be expanded in the replication by setting endnb larger than 4.
  1103		// This will have the effect of reading many bits out of b,
  1104		// but once the real bits are shifted out, b will supply as many
  1105		// zero bits as we try to read, which is exactly what we need.
  1106	
  1107		p = ptrmask
  1108		if typ.size < dataSize {
  1109			// Filling in bits for an array of typ.
  1110			// Set up for repetition of ptrmask during main loop.
  1111			// Note that ptrmask describes only a prefix of
  1112			const maxBits = sys.PtrSize*8 - 7
  1113			if typ.ptrdata/sys.PtrSize <= maxBits {
  1114				// Entire ptrmask fits in uintptr with room for a byte fragment.
  1115				// Load into pbits and never read from ptrmask again.
  1116				// This is especially important when the ptrmask has
  1117				// fewer than 8 bits in it; otherwise the reload in the middle
  1118				// of the Phase 2 loop would itself need to loop to gather
  1119				// at least 8 bits.
  1120	
  1121				// Accumulate ptrmask into b.
  1122				// ptrmask is sized to describe only typ.ptrdata, but we record
  1123				// it as describing typ.size bytes, since all the high bits are zero.
  1124				nb = typ.ptrdata / sys.PtrSize
  1125				for i := uintptr(0); i < nb; i += 8 {
  1126					b |= uintptr(*p) << i
  1127					p = add1(p)
  1128				}
  1129				nb = typ.size / sys.PtrSize
  1130	
  1131				// Replicate ptrmask to fill entire pbits uintptr.
  1132				// Doubling and truncating is fewer steps than
  1133				// iterating by nb each time. (nb could be 1.)
  1134				// Since we loaded typ.ptrdata/sys.PtrSize bits
  1135				// but are pretending to have typ.size/sys.PtrSize,
  1136				// there might be no replication necessary/possible.
  1137				pbits = b
  1138				endnb = nb
  1139				if nb+nb <= maxBits {
  1140					for endnb <= sys.PtrSize*8 {
  1141						pbits |= pbits << endnb
  1142						endnb += endnb
  1143					}
  1144					// Truncate to a multiple of original ptrmask.
  1145					// Because nb+nb <= maxBits, nb fits in a byte.
  1146					// Byte division is cheaper than uintptr division.
  1147					endnb = uintptr(maxBits/byte(nb)) * nb
  1148					pbits &= 1<<endnb - 1
  1149					b = pbits
  1150					nb = endnb
  1151				}
  1152	
  1153				// Clear p and endp as sentinel for using pbits.
  1154				// Checked during Phase 2 loop.
  1155				p = nil
  1156				endp = nil
  1157			} else {
  1158				// Ptrmask is larger. Read it multiple times.
  1159				n := (typ.ptrdata/sys.PtrSize+7)/8 - 1
  1160				endp = addb(ptrmask, n)
  1161				endnb = typ.size/sys.PtrSize - n*8
  1162			}
  1163		}
  1164		if p != nil {
  1165			b = uintptr(*p)
  1166			p = add1(p)
  1167			nb = 8
  1168		}
  1169	
  1170		if typ.size == dataSize {
  1171			// Single entry: can stop once we reach the non-pointer data.
  1172			nw = typ.ptrdata / sys.PtrSize
  1173		} else {
  1174			// Repeated instances of typ in an array.
  1175			// Have to process first N-1 entries in full, but can stop
  1176			// once we reach the non-pointer data in the final entry.
  1177			nw = ((dataSize/typ.size-1)*typ.size + typ.ptrdata) / sys.PtrSize
  1178		}
  1179		if nw == 0 {
  1180			// No pointers! Caller was supposed to check.
  1181			println("runtime: invalid type ", typ.string())
  1182			throw("heapBitsSetType: called with non-pointer type")
  1183			return
  1184		}
  1185		if nw < 2 {
  1186			// Must write at least 2 words, because the "no scan"
  1187			// encoding doesn't take effect until the third word.
  1188			nw = 2
  1189		}
  1190	
  1191		// Phase 1: Special case for leading byte (shift==0) or half-byte (shift==2).
  1192		// The leading byte is special because it contains the bits for word 1,
  1193		// which does not have the scan bit set.
  1194		// The leading half-byte is special because it's a half a byte,
  1195		// so we have to be careful with the bits already there.
  1196		switch {
  1197		default:
  1198			throw("heapBitsSetType: unexpected shift")
  1199	
  1200		case h.shift == 0:
  1201			// Ptrmask and heap bitmap are aligned.
  1202			// Handle first byte of bitmap specially.
  1203			//
  1204			// The first byte we write out covers the first four
  1205			// words of the object. The scan/dead bit on the first
  1206			// word must be set to scan since there are pointers
  1207			// somewhere in the object. The scan/dead bit on the
  1208			// second word is the checkmark, so we don't set it.
  1209			// In all following words, we set the scan/dead
  1210			// appropriately to indicate that the object contains
  1211			// to the next 2-bit entry in the bitmap.
  1212			//
  1213			// TODO: It doesn't matter if we set the checkmark, so
  1214			// maybe this case isn't needed any more.
  1215			hb = b & bitPointerAll
  1216			hb |= bitScan | bitScan<<(2*heapBitsShift) | bitScan<<(3*heapBitsShift)
  1217			if w += 4; w >= nw {
  1218				goto Phase3
  1219			}
  1220			*hbitp = uint8(hb)
  1221			hbitp = add1(hbitp)
  1222			b >>= 4
  1223			nb -= 4
  1224	
  1225		case sys.PtrSize == 8 && h.shift == 2:
  1226			// Ptrmask and heap bitmap are misaligned.
  1227			// The bits for the first two words are in a byte shared
  1228			// with another object, so we must be careful with the bits
  1229			// already there.
  1230			// We took care of 1-word and 2-word objects above,
  1231			// so this is at least a 6-word object.
  1232			hb = (b & (bitPointer | bitPointer<<heapBitsShift)) << (2 * heapBitsShift)
  1233			// This is not noscan, so set the scan bit in the
  1234			// first word.
  1235			hb |= bitScan << (2 * heapBitsShift)
  1236			b >>= 2
  1237			nb -= 2
  1238			// Note: no bitScan for second word because that's
  1239			// the checkmark.
  1240			*hbitp &^= uint8((bitPointer | bitScan | (bitPointer << heapBitsShift)) << (2 * heapBitsShift))
  1241			*hbitp |= uint8(hb)
  1242			hbitp = add1(hbitp)
  1243			if w += 2; w >= nw {
  1244				// We know that there is more data, because we handled 2-word objects above.
  1245				// This must be at least a 6-word object. If we're out of pointer words,
  1246				// mark no scan in next bitmap byte and finish.
  1247				hb = 0
  1248				w += 4
  1249				goto Phase3
  1250			}
  1251		}
  1252	
  1253		// Phase 2: Full bytes in bitmap, up to but not including write to last byte (full or partial) in bitmap.
  1254		// The loop computes the bits for that last write but does not execute the write;
  1255		// it leaves the bits in hb for processing by phase 3.
  1256		// To avoid repeated adjustment of nb, we subtract out the 4 bits we're going to
  1257		// use in the first half of the loop right now, and then we only adjust nb explicitly
  1258		// if the 8 bits used by each iteration isn't balanced by 8 bits loaded mid-loop.
  1259		nb -= 4
  1260		for {
  1261			// Emit bitmap byte.
  1262			// b has at least nb+4 bits, with one exception:
  1263			// if w+4 >= nw, then b has only nw-w bits,
  1264			// but we'll stop at the break and then truncate
  1265			// appropriately in Phase 3.
  1266			hb = b & bitPointerAll
  1267			hb |= bitScanAll
  1268			if w += 4; w >= nw {
  1269				break
  1270			}
  1271			*hbitp = uint8(hb)
  1272			hbitp = add1(hbitp)
  1273			b >>= 4
  1274	
  1275			// Load more bits. b has nb right now.
  1276			if p != endp {
  1277				// Fast path: keep reading from ptrmask.
  1278				// nb unmodified: we just loaded 8 bits,
  1279				// and the next iteration will consume 8 bits,
  1280				// leaving us with the same nb the next time we're here.
  1281				if nb < 8 {
  1282					b |= uintptr(*p) << nb
  1283					p = add1(p)
  1284				} else {
  1285					// Reduce the number of bits in b.
  1286					// This is important if we skipped
  1287					// over a scalar tail, since nb could
  1288					// be larger than the bit width of b.
  1289					nb -= 8
  1290				}
  1291			} else if p == nil {
  1292				// Almost as fast path: track bit count and refill from pbits.
  1293				// For short repetitions.
  1294				if nb < 8 {
  1295					b |= pbits << nb
  1296					nb += endnb
  1297				}
  1298				nb -= 8 // for next iteration
  1299			} else {
  1300				// Slow path: reached end of ptrmask.
  1301				// Process final partial byte and rewind to start.
  1302				b |= uintptr(*p) << nb
  1303				nb += endnb
  1304				if nb < 8 {
  1305					b |= uintptr(*ptrmask) << nb
  1306					p = add1(ptrmask)
  1307				} else {
  1308					nb -= 8
  1309					p = ptrmask
  1310				}
  1311			}
  1312	
  1313			// Emit bitmap byte.
  1314			hb = b & bitPointerAll
  1315			hb |= bitScanAll
  1316			if w += 4; w >= nw {
  1317				break
  1318			}
  1319			*hbitp = uint8(hb)
  1320			hbitp = add1(hbitp)
  1321			b >>= 4
  1322		}
  1323	
  1324	Phase3:
  1325		// Phase 3: Write last byte or partial byte and zero the rest of the bitmap entries.
  1326		if w > nw {
  1327			// Counting the 4 entries in hb not yet written to memory,
  1328			// there are more entries than possible pointer slots.
  1329			// Discard the excess entries (can't be more than 3).
  1330			mask := uintptr(1)<<(4-(w-nw)) - 1
  1331			hb &= mask | mask<<4 // apply mask to both pointer bits and scan bits
  1332		}
  1333	
  1334		// Change nw from counting possibly-pointer words to total words in allocation.
  1335		nw = size / sys.PtrSize
  1336	
  1337		// Write whole bitmap bytes.
  1338		// The first is hb, the rest are zero.
  1339		if w <= nw {
  1340			*hbitp = uint8(hb)
  1341			hbitp = add1(hbitp)
  1342			hb = 0 // for possible final half-byte below
  1343			for w += 4; w <= nw; w += 4 {
  1344				*hbitp = 0
  1345				hbitp = add1(hbitp)
  1346			}
  1347		}
  1348	
  1349		// Write final partial bitmap byte if any.
  1350		// We know w > nw, or else we'd still be in the loop above.
  1351		// It can be bigger only due to the 4 entries in hb that it counts.
  1352		// If w == nw+4 then there's nothing left to do: we wrote all nw entries
  1353		// and can discard the 4 sitting in hb.
  1354		// But if w == nw+2, we need to write first two in hb.
  1355		// The byte is shared with the next object, so be careful with
  1356		// existing bits.
  1357		if w == nw+2 {
  1358			*hbitp = *hbitp&^(bitPointer|bitScan|(bitPointer|bitScan)<<heapBitsShift) | uint8(hb)
  1359		}
  1360	
  1361	Phase4:
  1362		// Phase 4: Copy unrolled bitmap to per-arena bitmaps, if necessary.
  1363		if outOfPlace {
  1364			// TODO: We could probably make this faster by
  1365			// handling [x+dataSize, x+size) specially.
  1366			h := heapBitsForAddr(x)
  1367			// cnw is the number of heap words, or bit pairs
  1368			// remaining (like nw above).
  1369			cnw := size / sys.PtrSize
  1370			src := (*uint8)(unsafe.Pointer(x))
  1371			// We know the first and last byte of the bitmap are
  1372			// not the same, but it's still possible for small
  1373			// objects span arenas, so it may share bitmap bytes
  1374			// with neighboring objects.
  1375			//
  1376			// Handle the first byte specially if it's shared. See
  1377			// Phase 1 for why this is the only special case we need.
  1378			if doubleCheck {
  1379				if !(h.shift == 0 || (sys.PtrSize == 8 && h.shift == 2)) {
  1380					print("x=", x, " size=", size, " cnw=", h.shift, "\n")
  1381					throw("bad start shift")
  1382				}
  1383			}
  1384			if sys.PtrSize == 8 && h.shift == 2 {
  1385				*h.bitp = *h.bitp&^((bitPointer|bitScan|(bitPointer|bitScan)<<heapBitsShift)<<(2*heapBitsShift)) | *src
  1386				h = h.next().next()
  1387				cnw -= 2
  1388				src = addb(src, 1)
  1389			}
  1390			// We're now byte aligned. Copy out to per-arena
  1391			// bitmaps until the last byte (which may again be
  1392			// partial).
  1393			for cnw >= 4 {
  1394				// This loop processes four words at a time,
  1395				// so round cnw down accordingly.
  1396				hNext, words := h.forwardOrBoundary(cnw / 4 * 4)
  1397	
  1398				// n is the number of bitmap bytes to copy.
  1399				n := words / 4
  1400				memmove(unsafe.Pointer(h.bitp), unsafe.Pointer(src), n)
  1401				cnw -= words
  1402				h = hNext
  1403				src = addb(src, n)
  1404			}
  1405			if doubleCheck && h.shift != 0 {
  1406				print("cnw=", cnw, " h.shift=", h.shift, "\n")
  1407				throw("bad shift after block copy")
  1408			}
  1409			// Handle the last byte if it's shared.
  1410			if cnw == 2 {
  1411				*h.bitp = *h.bitp&^(bitPointer|bitScan|(bitPointer|bitScan)<<heapBitsShift) | *src
  1412				src = addb(src, 1)
  1413				h = h.next().next()
  1414			}
  1415			if doubleCheck {
  1416				if uintptr(unsafe.Pointer(src)) > x+size {
  1417					throw("copy exceeded object size")
  1418				}
  1419				if !(cnw == 0 || cnw == 2) {
  1420					print("x=", x, " size=", size, " cnw=", cnw, "\n")
  1421					throw("bad number of remaining words")
  1422				}
  1423				// Set up hbitp so doubleCheck code below can check it.
  1424				hbitp = h.bitp
  1425			}
  1426			// Zero the object where we wrote the bitmap.
  1427			memclrNoHeapPointers(unsafe.Pointer(x), uintptr(unsafe.Pointer(src))-x)
  1428		}
  1429	
  1430		// Double check the whole bitmap.
  1431		if doubleCheck {
  1432			// x+size may not point to the heap, so back up one
  1433			// word and then call next().
  1434			end := heapBitsForAddr(x + size - sys.PtrSize).next()
  1435			endAI := arenaIdx(end.arena)
  1436			if !outOfPlace && (end.bitp == nil || (end.shift == 0 && end.bitp == &mheap_.arenas[endAI.l1()][endAI.l2()].bitmap[0])) {
  1437				// The unrolling code above walks hbitp just
  1438				// past the bitmap without moving to the next
  1439				// arena. Synthesize this for end.bitp.
  1440				end.arena--
  1441				endAI = arenaIdx(end.arena)
  1442				end.bitp = addb(&mheap_.arenas[endAI.l1()][endAI.l2()].bitmap[0], heapArenaBitmapBytes)
  1443				end.last = nil
  1444			}
  1445			if typ.kind&kindGCProg == 0 && (hbitp != end.bitp || (w == nw+2) != (end.shift == 2)) {
  1446				println("ended at wrong bitmap byte for", typ.string(), "x", dataSize/typ.size)
  1447				print("typ.size=", typ.size, " typ.ptrdata=", typ.ptrdata, " dataSize=", dataSize, " size=", size, "\n")
  1448				print("w=", w, " nw=", nw, " b=", hex(b), " nb=", nb, " hb=", hex(hb), "\n")
  1449				h0 := heapBitsForAddr(x)
  1450				print("initial bits h0.bitp=", h0.bitp, " h0.shift=", h0.shift, "\n")
  1451				print("ended at hbitp=", hbitp, " but next starts at bitp=", end.bitp, " shift=", end.shift, "\n")
  1452				throw("bad heapBitsSetType")
  1453			}
  1454	
  1455			// Double-check that bits to be written were written correctly.
  1456			// Does not check that other bits were not written, unfortunately.
  1457			h := heapBitsForAddr(x)
  1458			nptr := typ.ptrdata / sys.PtrSize
  1459			ndata := typ.size / sys.PtrSize
  1460			count := dataSize / typ.size
  1461			totalptr := ((count-1)*typ.size + typ.ptrdata) / sys.PtrSize
  1462			for i := uintptr(0); i < size/sys.PtrSize; i++ {
  1463				j := i % ndata
  1464				var have, want uint8
  1465				have = (*h.bitp >> h.shift) & (bitPointer | bitScan)
  1466				if i >= totalptr {
  1467					want = 0 // deadmarker
  1468					if typ.kind&kindGCProg != 0 && i < (totalptr+3)/4*4 {
  1469						want = bitScan
  1470					}
  1471				} else {
  1472					if j < nptr && (*addb(ptrmask, j/8)>>(j%8))&1 != 0 {
  1473						want |= bitPointer
  1474					}
  1475					if i != 1 {
  1476						want |= bitScan
  1477					} else {
  1478						have &^= bitScan
  1479					}
  1480				}
  1481				if have != want {
  1482					println("mismatch writing bits for", typ.string(), "x", dataSize/typ.size)
  1483					print("typ.size=", typ.size, " typ.ptrdata=", typ.ptrdata, " dataSize=", dataSize, " size=", size, "\n")
  1484					print("kindGCProg=", typ.kind&kindGCProg != 0, " outOfPlace=", outOfPlace, "\n")
  1485					print("w=", w, " nw=", nw, " b=", hex(b), " nb=", nb, " hb=", hex(hb), "\n")
  1486					h0 := heapBitsForAddr(x)
  1487					print("initial bits h0.bitp=", h0.bitp, " h0.shift=", h0.shift, "\n")
  1488					print("current bits h.bitp=", h.bitp, " h.shift=", h.shift, " *h.bitp=", hex(*h.bitp), "\n")
  1489					print("ptrmask=", ptrmask, " p=", p, " endp=", endp, " endnb=", endnb, " pbits=", hex(pbits), " b=", hex(b), " nb=", nb, "\n")
  1490					println("at word", i, "offset", i*sys.PtrSize, "have", hex(have), "want", hex(want))
  1491					if typ.kind&kindGCProg != 0 {
  1492						println("GC program:")
  1493						dumpGCProg(addb(typ.gcdata, 4))
  1494					}
  1495					throw("bad heapBitsSetType")
  1496				}
  1497				h = h.next()
  1498			}
  1499			if ptrmask == debugPtrmask.data {
  1500				unlock(&debugPtrmask.lock)
  1501			}
  1502		}
  1503	}
  1504	
  1505	var debugPtrmask struct {
  1506		lock mutex
  1507		data *byte
  1508	}
  1509	
  1510	// heapBitsSetTypeGCProg implements heapBitsSetType using a GC program.
  1511	// progSize is the size of the memory described by the program.
  1512	// elemSize is the size of the element that the GC program describes (a prefix of).
  1513	// dataSize is the total size of the intended data, a multiple of elemSize.
  1514	// allocSize is the total size of the allocated memory.
  1515	//
  1516	// GC programs are only used for large allocations.
  1517	// heapBitsSetType requires that allocSize is a multiple of 4 words,
  1518	// so that the relevant bitmap bytes are not shared with surrounding
  1519	// objects.
  1520	func heapBitsSetTypeGCProg(h heapBits, progSize, elemSize, dataSize, allocSize uintptr, prog *byte) {
  1521		if sys.PtrSize == 8 && allocSize%(4*sys.PtrSize) != 0 {
  1522			// Alignment will be wrong.
  1523			throw("heapBitsSetTypeGCProg: small allocation")
  1524		}
  1525		var totalBits uintptr
  1526		if elemSize == dataSize {
  1527			totalBits = runGCProg(prog, nil, h.bitp, 2)
  1528			if totalBits*sys.PtrSize != progSize {
  1529				println("runtime: heapBitsSetTypeGCProg: total bits", totalBits, "but progSize", progSize)
  1530				throw("heapBitsSetTypeGCProg: unexpected bit count")
  1531			}
  1532		} else {
  1533			count := dataSize / elemSize
  1534	
  1535			// Piece together program trailer to run after prog that does:
  1536			//	literal(0)
  1537			//	repeat(1, elemSize-progSize-1) // zeros to fill element size
  1538			//	repeat(elemSize, count-1) // repeat that element for count
  1539			// This zero-pads the data remaining in the first element and then
  1540			// repeats that first element to fill the array.
  1541			var trailer [40]byte // 3 varints (max 10 each) + some bytes
  1542			i := 0
  1543			if n := elemSize/sys.PtrSize - progSize/sys.PtrSize; n > 0 {
  1544				// literal(0)
  1545				trailer[i] = 0x01
  1546				i++
  1547				trailer[i] = 0
  1548				i++
  1549				if n > 1 {
  1550					// repeat(1, n-1)
  1551					trailer[i] = 0x81
  1552					i++
  1553					n--
  1554					for ; n >= 0x80; n >>= 7 {
  1555						trailer[i] = byte(n | 0x80)
  1556						i++
  1557					}
  1558					trailer[i] = byte(n)
  1559					i++
  1560				}
  1561			}
  1562			// repeat(elemSize/ptrSize, count-1)
  1563			trailer[i] = 0x80
  1564			i++
  1565			n := elemSize / sys.PtrSize
  1566			for ; n >= 0x80; n >>= 7 {
  1567				trailer[i] = byte(n | 0x80)
  1568				i++
  1569			}
  1570			trailer[i] = byte(n)
  1571			i++
  1572			n = count - 1
  1573			for ; n >= 0x80; n >>= 7 {
  1574				trailer[i] = byte(n | 0x80)
  1575				i++
  1576			}
  1577			trailer[i] = byte(n)
  1578			i++
  1579			trailer[i] = 0
  1580			i++
  1581	
  1582			runGCProg(prog, &trailer[0], h.bitp, 2)
  1583	
  1584			// Even though we filled in the full array just now,
  1585			// record that we only filled in up to the ptrdata of the
  1586			// last element. This will cause the code below to
  1587			// memclr the dead section of the final array element,
  1588			// so that scanobject can stop early in the final element.
  1589			totalBits = (elemSize*(count-1) + progSize) / sys.PtrSize
  1590		}
  1591		endProg := unsafe.Pointer(addb(h.bitp, (totalBits+3)/4))
  1592		endAlloc := unsafe.Pointer(addb(h.bitp, allocSize/sys.PtrSize/wordsPerBitmapByte))
  1593		memclrNoHeapPointers(endProg, uintptr(endAlloc)-uintptr(endProg))
  1594	}
  1595	
  1596	// progToPointerMask returns the 1-bit pointer mask output by the GC program prog.
  1597	// size the size of the region described by prog, in bytes.
  1598	// The resulting bitvector will have no more than size/sys.PtrSize bits.
  1599	func progToPointerMask(prog *byte, size uintptr) bitvector {
  1600		n := (size/sys.PtrSize + 7) / 8
  1601		x := (*[1 << 30]byte)(persistentalloc(n+1, 1, &memstats.buckhash_sys))[:n+1]
  1602		x[len(x)-1] = 0xa1 // overflow check sentinel
  1603		n = runGCProg(prog, nil, &x[0], 1)
  1604		if x[len(x)-1] != 0xa1 {
  1605			throw("progToPointerMask: overflow")
  1606		}
  1607		return bitvector{int32(n), &x[0]}
  1608	}
  1609	
  1610	// Packed GC pointer bitmaps, aka GC programs.
  1611	//
  1612	// For large types containing arrays, the type information has a
  1613	// natural repetition that can be encoded to save space in the
  1614	// binary and in the memory representation of the type information.
  1615	//
  1616	// The encoding is a simple Lempel-Ziv style bytecode machine
  1617	// with the following instructions:
  1618	//
  1619	//	00000000: stop
  1620	//	0nnnnnnn: emit n bits copied from the next (n+7)/8 bytes
  1621	//	10000000 n c: repeat the previous n bits c times; n, c are varints
  1622	//	1nnnnnnn c: repeat the previous n bits c times; c is a varint
  1623	
  1624	// runGCProg executes the GC program prog, and then trailer if non-nil,
  1625	// writing to dst with entries of the given size.
  1626	// If size == 1, dst is a 1-bit pointer mask laid out moving forward from dst.
  1627	// If size == 2, dst is the 2-bit heap bitmap, and writes move backward
  1628	// starting at dst (because the heap bitmap does). In this case, the caller guarantees
  1629	// that only whole bytes in dst need to be written.
  1630	//
  1631	// runGCProg returns the number of 1- or 2-bit entries written to memory.
  1632	func runGCProg(prog, trailer, dst *byte, size int) uintptr {
  1633		dstStart := dst
  1634	
  1635		// Bits waiting to be written to memory.
  1636		var bits uintptr
  1637		var nbits uintptr
  1638	
  1639		p := prog
  1640	Run:
  1641		for {
  1642			// Flush accumulated full bytes.
  1643			// The rest of the loop assumes that nbits <= 7.
  1644			for ; nbits >= 8; nbits -= 8 {
  1645				if size == 1 {
  1646					*dst = uint8(bits)
  1647					dst = add1(dst)
  1648					bits >>= 8
  1649				} else {
  1650					v := bits&bitPointerAll | bitScanAll
  1651					*dst = uint8(v)
  1652					dst = add1(dst)
  1653					bits >>= 4
  1654					v = bits&bitPointerAll | bitScanAll
  1655					*dst = uint8(v)
  1656					dst = add1(dst)
  1657					bits >>= 4
  1658				}
  1659			}
  1660	
  1661			// Process one instruction.
  1662			inst := uintptr(*p)
  1663			p = add1(p)
  1664			n := inst & 0x7F
  1665			if inst&0x80 == 0 {
  1666				// Literal bits; n == 0 means end of program.
  1667				if n == 0 {
  1668					// Program is over; continue in trailer if present.
  1669					if trailer != nil {
  1670						p = trailer
  1671						trailer = nil
  1672						continue
  1673					}
  1674					break Run
  1675				}
  1676				nbyte := n / 8
  1677				for i := uintptr(0); i < nbyte; i++ {
  1678					bits |= uintptr(*p) << nbits
  1679					p = add1(p)
  1680					if size == 1 {
  1681						*dst = uint8(bits)
  1682						dst = add1(dst)
  1683						bits >>= 8
  1684					} else {
  1685						v := bits&0xf | bitScanAll
  1686						*dst = uint8(v)
  1687						dst = add1(dst)
  1688						bits >>= 4
  1689						v = bits&0xf | bitScanAll
  1690						*dst = uint8(v)
  1691						dst = add1(dst)
  1692						bits >>= 4
  1693					}
  1694				}
  1695				if n %= 8; n > 0 {
  1696					bits |= uintptr(*p) << nbits
  1697					p = add1(p)
  1698					nbits += n
  1699				}
  1700				continue Run
  1701			}
  1702	
  1703			// Repeat. If n == 0, it is encoded in a varint in the next bytes.
  1704			if n == 0 {
  1705				for off := uint(0); ; off += 7 {
  1706					x := uintptr(*p)
  1707					p = add1(p)
  1708					n |= (x & 0x7F) << off
  1709					if x&0x80 == 0 {
  1710						break
  1711					}
  1712				}
  1713			}
  1714	
  1715			// Count is encoded in a varint in the next bytes.
  1716			c := uintptr(0)
  1717			for off := uint(0); ; off += 7 {
  1718				x := uintptr(*p)
  1719				p = add1(p)
  1720				c |= (x & 0x7F) << off
  1721				if x&0x80 == 0 {
  1722					break
  1723				}
  1724			}
  1725			c *= n // now total number of bits to copy
  1726	
  1727			// If the number of bits being repeated is small, load them
  1728			// into a register and use that register for the entire loop
  1729			// instead of repeatedly reading from memory.
  1730			// Handling fewer than 8 bits here makes the general loop simpler.
  1731			// The cutoff is sys.PtrSize*8 - 7 to guarantee that when we add
  1732			// the pattern to a bit buffer holding at most 7 bits (a partial byte)
  1733			// it will not overflow.
  1734			src := dst
  1735			const maxBits = sys.PtrSize*8 - 7
  1736			if n <= maxBits {
  1737				// Start with bits in output buffer.
  1738				pattern := bits
  1739				npattern := nbits
  1740	
  1741				// If we need more bits, fetch them from memory.
  1742				if size == 1 {
  1743					src = subtract1(src)
  1744					for npattern < n {
  1745						pattern <<= 8
  1746						pattern |= uintptr(*src)
  1747						src = subtract1(src)
  1748						npattern += 8
  1749					}
  1750				} else {
  1751					src = subtract1(src)
  1752					for npattern < n {
  1753						pattern <<= 4
  1754						pattern |= uintptr(*src) & 0xf
  1755						src = subtract1(src)
  1756						npattern += 4
  1757					}
  1758				}
  1759	
  1760				// We started with the whole bit output buffer,
  1761				// and then we loaded bits from whole bytes.
  1762				// Either way, we might now have too many instead of too few.
  1763				// Discard the extra.
  1764				if npattern > n {
  1765					pattern >>= npattern - n
  1766					npattern = n
  1767				}
  1768	
  1769				// Replicate pattern to at most maxBits.
  1770				if npattern == 1 {
  1771					// One bit being repeated.
  1772					// If the bit is 1, make the pattern all 1s.
  1773					// If the bit is 0, the pattern is already all 0s,
  1774					// but we can claim that the number of bits
  1775					// in the word is equal to the number we need (c),
  1776					// because right shift of bits will zero fill.
  1777					if pattern == 1 {
  1778						pattern = 1<<maxBits - 1
  1779						npattern = maxBits
  1780					} else {
  1781						npattern = c
  1782					}
  1783				} else {
  1784					b := pattern
  1785					nb := npattern
  1786					if nb+nb <= maxBits {
  1787						// Double pattern until the whole uintptr is filled.
  1788						for nb <= sys.PtrSize*8 {
  1789							b |= b << nb
  1790							nb += nb
  1791						}
  1792						// Trim away incomplete copy of original pattern in high bits.
  1793						// TODO(rsc): Replace with table lookup or loop on systems without divide?
  1794						nb = maxBits / npattern * npattern
  1795						b &= 1<<nb - 1
  1796						pattern = b
  1797						npattern = nb
  1798					}
  1799				}
  1800	
  1801				// Add pattern to bit buffer and flush bit buffer, c/npattern times.
  1802				// Since pattern contains >8 bits, there will be full bytes to flush
  1803				// on each iteration.
  1804				for ; c >= npattern; c -= npattern {
  1805					bits |= pattern << nbits
  1806					nbits += npattern
  1807					if size == 1 {
  1808						for nbits >= 8 {
  1809							*dst = uint8(bits)
  1810							dst = add1(dst)
  1811							bits >>= 8
  1812							nbits -= 8
  1813						}
  1814					} else {
  1815						for nbits >= 4 {
  1816							*dst = uint8(bits&0xf | bitScanAll)
  1817							dst = add1(dst)
  1818							bits >>= 4
  1819							nbits -= 4
  1820						}
  1821					}
  1822				}
  1823	
  1824				// Add final fragment to bit buffer.
  1825				if c > 0 {
  1826					pattern &= 1<<c - 1
  1827					bits |= pattern << nbits
  1828					nbits += c
  1829				}
  1830				continue Run
  1831			}
  1832	
  1833			// Repeat; n too large to fit in a register.
  1834			// Since nbits <= 7, we know the first few bytes of repeated data
  1835			// are already written to memory.
  1836			off := n - nbits // n > nbits because n > maxBits and nbits <= 7
  1837			if size == 1 {
  1838				// Leading src fragment.
  1839				src = subtractb(src, (off+7)/8)
  1840				if frag := off & 7; frag != 0 {
  1841					bits |= uintptr(*src) >> (8 - frag) << nbits
  1842					src = add1(src)
  1843					nbits += frag
  1844					c -= frag
  1845				}
  1846				// Main loop: load one byte, write another.
  1847				// The bits are rotating through the bit buffer.
  1848				for i := c / 8; i > 0; i-- {
  1849					bits |= uintptr(*src) << nbits
  1850					src = add1(src)
  1851					*dst = uint8(bits)
  1852					dst = add1(dst)
  1853					bits >>= 8
  1854				}
  1855				// Final src fragment.
  1856				if c %= 8; c > 0 {
  1857					bits |= (uintptr(*src) & (1<<c - 1)) << nbits
  1858					nbits += c
  1859				}
  1860			} else {
  1861				// Leading src fragment.
  1862				src = subtractb(src, (off+3)/4)
  1863				if frag := off & 3; frag != 0 {
  1864					bits |= (uintptr(*src) & 0xf) >> (4 - frag) << nbits
  1865					src = add1(src)
  1866					nbits += frag
  1867					c -= frag
  1868				}
  1869				// Main loop: load one byte, write another.
  1870				// The bits are rotating through the bit buffer.
  1871				for i := c / 4; i > 0; i-- {
  1872					bits |= (uintptr(*src) & 0xf) << nbits
  1873					src = add1(src)
  1874					*dst = uint8(bits&0xf | bitScanAll)
  1875					dst = add1(dst)
  1876					bits >>= 4
  1877				}
  1878				// Final src fragment.
  1879				if c %= 4; c > 0 {
  1880					bits |= (uintptr(*src) & (1<<c - 1)) << nbits
  1881					nbits += c
  1882				}
  1883			}
  1884		}
  1885	
  1886		// Write any final bits out, using full-byte writes, even for the final byte.
  1887		var totalBits uintptr
  1888		if size == 1 {
  1889			totalBits = (uintptr(unsafe.Pointer(dst))-uintptr(unsafe.Pointer(dstStart)))*8 + nbits
  1890			nbits += -nbits & 7
  1891			for ; nbits > 0; nbits -= 8 {
  1892				*dst = uint8(bits)
  1893				dst = add1(dst)
  1894				bits >>= 8
  1895			}
  1896		} else {
  1897			totalBits = (uintptr(unsafe.Pointer(dst))-uintptr(unsafe.Pointer(dstStart)))*4 + nbits
  1898			nbits += -nbits & 3
  1899			for ; nbits > 0; nbits -= 4 {
  1900				v := bits&0xf | bitScanAll
  1901				*dst = uint8(v)
  1902				dst = add1(dst)
  1903				bits >>= 4
  1904			}
  1905		}
  1906		return totalBits
  1907	}
  1908	
  1909	// materializeGCProg allocates space for the (1-bit) pointer bitmask
  1910	// for an object of size ptrdata.  Then it fills that space with the
  1911	// pointer bitmask specified by the program prog.
  1912	// The bitmask starts at s.startAddr.
  1913	// The result must be deallocated with dematerializeGCProg.
  1914	func materializeGCProg(ptrdata uintptr, prog *byte) *mspan {
  1915		s := mheap_.allocManual((ptrdata/(8*sys.PtrSize)+pageSize-1)/pageSize, &memstats.gc_sys)
  1916		runGCProg(addb(prog, 4), nil, (*byte)(unsafe.Pointer(s.startAddr)), 1)
  1917		return s
  1918	}
  1919	func dematerializeGCProg(s *mspan) {
  1920		mheap_.freeManual(s, &memstats.gc_sys)
  1921	}
  1922	
  1923	func dumpGCProg(p *byte) {
  1924		nptr := 0
  1925		for {
  1926			x := *p
  1927			p = add1(p)
  1928			if x == 0 {
  1929				print("\t", nptr, " end\n")
  1930				break
  1931			}
  1932			if x&0x80 == 0 {
  1933				print("\t", nptr, " lit ", x, ":")
  1934				n := int(x+7) / 8
  1935				for i := 0; i < n; i++ {
  1936					print(" ", hex(*p))
  1937					p = add1(p)
  1938				}
  1939				print("\n")
  1940				nptr += int(x)
  1941			} else {
  1942				nbit := int(x &^ 0x80)
  1943				if nbit == 0 {
  1944					for nb := uint(0); ; nb += 7 {
  1945						x := *p
  1946						p = add1(p)
  1947						nbit |= int(x&0x7f) << nb
  1948						if x&0x80 == 0 {
  1949							break
  1950						}
  1951					}
  1952				}
  1953				count := 0
  1954				for nb := uint(0); ; nb += 7 {
  1955					x := *p
  1956					p = add1(p)
  1957					count |= int(x&0x7f) << nb
  1958					if x&0x80 == 0 {
  1959						break
  1960					}
  1961				}
  1962				print("\t", nptr, " repeat ", nbit, " × ", count, "\n")
  1963				nptr += nbit * count
  1964			}
  1965		}
  1966	}
  1967	
  1968	// Testing.
  1969	
  1970	func getgcmaskcb(frame *stkframe, ctxt unsafe.Pointer) bool {
  1971		target := (*stkframe)(ctxt)
  1972		if frame.sp <= target.sp && target.sp < frame.varp {
  1973			*target = *frame
  1974			return false
  1975		}
  1976		return true
  1977	}
  1978	
  1979	// gcbits returns the GC type info for x, for testing.
  1980	// The result is the bitmap entries (0 or 1), one entry per byte.
  1981	//go:linkname reflect_gcbits reflect.gcbits
  1982	func reflect_gcbits(x interface{}) []byte {
  1983		ret := getgcmask(x)
  1984		typ := (*ptrtype)(unsafe.Pointer(efaceOf(&x)._type)).elem
  1985		nptr := typ.ptrdata / sys.PtrSize
  1986		for uintptr(len(ret)) > nptr && ret[len(ret)-1] == 0 {
  1987			ret = ret[:len(ret)-1]
  1988		}
  1989		return ret
  1990	}
  1991	
  1992	// Returns GC type info for the pointer stored in ep for testing.
  1993	// If ep points to the stack, only static live information will be returned
  1994	// (i.e. not for objects which are only dynamically live stack objects).
  1995	func getgcmask(ep interface{}) (mask []byte) {
  1996		e := *efaceOf(&ep)
  1997		p := e.data
  1998		t := e._type
  1999		// data or bss
  2000		for _, datap := range activeModules() {
  2001			// data
  2002			if datap.data <= uintptr(p) && uintptr(p) < datap.edata {
  2003				bitmap := datap.gcdatamask.bytedata
  2004				n := (*ptrtype)(unsafe.Pointer(t)).elem.size
  2005				mask = make([]byte, n/sys.PtrSize)
  2006				for i := uintptr(0); i < n; i += sys.PtrSize {
  2007					off := (uintptr(p) + i - datap.data) / sys.PtrSize
  2008					mask[i/sys.PtrSize] = (*addb(bitmap, off/8) >> (off % 8)) & 1
  2009				}
  2010				return
  2011			}
  2012	
  2013			// bss
  2014			if datap.bss <= uintptr(p) && uintptr(p) < datap.ebss {
  2015				bitmap := datap.gcbssmask.bytedata
  2016				n := (*ptrtype)(unsafe.Pointer(t)).elem.size
  2017				mask = make([]byte, n/sys.PtrSize)
  2018				for i := uintptr(0); i < n; i += sys.PtrSize {
  2019					off := (uintptr(p) + i - datap.bss) / sys.PtrSize
  2020					mask[i/sys.PtrSize] = (*addb(bitmap, off/8) >> (off % 8)) & 1
  2021				}
  2022				return
  2023			}
  2024		}
  2025	
  2026		// heap
  2027		if base, s, _ := findObject(uintptr(p), 0, 0); base != 0 {
  2028			hbits := heapBitsForAddr(base)
  2029			n := s.elemsize
  2030			mask = make([]byte, n/sys.PtrSize)
  2031			for i := uintptr(0); i < n; i += sys.PtrSize {
  2032				if hbits.isPointer() {
  2033					mask[i/sys.PtrSize] = 1
  2034				}
  2035				if i != 1*sys.PtrSize && !hbits.morePointers() {
  2036					mask = mask[:i/sys.PtrSize]
  2037					break
  2038				}
  2039				hbits = hbits.next()
  2040			}
  2041			return
  2042		}
  2043	
  2044		// stack
  2045		if _g_ := getg(); _g_.m.curg.stack.lo <= uintptr(p) && uintptr(p) < _g_.m.curg.stack.hi {
  2046			var frame stkframe
  2047			frame.sp = uintptr(p)
  2048			_g_ := getg()
  2049			gentraceback(_g_.m.curg.sched.pc, _g_.m.curg.sched.sp, 0, _g_.m.curg, 0, nil, 1000, getgcmaskcb, noescape(unsafe.Pointer(&frame)), 0)
  2050			if frame.fn.valid() {
  2051				locals, _, _ := getStackMap(&frame, nil, false)
  2052				if locals.n == 0 {
  2053					return
  2054				}
  2055				size := uintptr(locals.n) * sys.PtrSize
  2056				n := (*ptrtype)(unsafe.Pointer(t)).elem.size
  2057				mask = make([]byte, n/sys.PtrSize)
  2058				for i := uintptr(0); i < n; i += sys.PtrSize {
  2059					off := (uintptr(p) + i - frame.varp + size) / sys.PtrSize
  2060					mask[i/sys.PtrSize] = locals.ptrbit(off)
  2061				}
  2062			}
  2063			return
  2064		}
  2065	
  2066		// otherwise, not something the GC knows about.
  2067		// possibly read-only data, like malloc(0).
  2068		// must not have pointers
  2069		return
  2070	}
  2071	

View as plain text