...

Source file src/pkg/time/time.go

     1	// Copyright 2009 The Go Authors. All rights reserved.
     2	// Use of this source code is governed by a BSD-style
     3	// license that can be found in the LICENSE file.
     4	
     5	// Package time provides functionality for measuring and displaying time.
     6	//
     7	// The calendrical calculations always assume a Gregorian calendar, with
     8	// no leap seconds.
     9	//
    10	// Monotonic Clocks
    11	//
    12	// Operating systems provide both a “wall clock,” which is subject to
    13	// changes for clock synchronization, and a “monotonic clock,” which is
    14	// not. The general rule is that the wall clock is for telling time and
    15	// the monotonic clock is for measuring time. Rather than split the API,
    16	// in this package the Time returned by time.Now contains both a wall
    17	// clock reading and a monotonic clock reading; later time-telling
    18	// operations use the wall clock reading, but later time-measuring
    19	// operations, specifically comparisons and subtractions, use the
    20	// monotonic clock reading.
    21	//
    22	// For example, this code always computes a positive elapsed time of
    23	// approximately 20 milliseconds, even if the wall clock is changed during
    24	// the operation being timed:
    25	//
    26	//	start := time.Now()
    27	//	... operation that takes 20 milliseconds ...
    28	//	t := time.Now()
    29	//	elapsed := t.Sub(start)
    30	//
    31	// Other idioms, such as time.Since(start), time.Until(deadline), and
    32	// time.Now().Before(deadline), are similarly robust against wall clock
    33	// resets.
    34	//
    35	// The rest of this section gives the precise details of how operations
    36	// use monotonic clocks, but understanding those details is not required
    37	// to use this package.
    38	//
    39	// The Time returned by time.Now contains a monotonic clock reading.
    40	// If Time t has a monotonic clock reading, t.Add adds the same duration to
    41	// both the wall clock and monotonic clock readings to compute the result.
    42	// Because t.AddDate(y, m, d), t.Round(d), and t.Truncate(d) are wall time
    43	// computations, they always strip any monotonic clock reading from their results.
    44	// Because t.In, t.Local, and t.UTC are used for their effect on the interpretation
    45	// of the wall time, they also strip any monotonic clock reading from their results.
    46	// The canonical way to strip a monotonic clock reading is to use t = t.Round(0).
    47	//
    48	// If Times t and u both contain monotonic clock readings, the operations
    49	// t.After(u), t.Before(u), t.Equal(u), and t.Sub(u) are carried out
    50	// using the monotonic clock readings alone, ignoring the wall clock
    51	// readings. If either t or u contains no monotonic clock reading, these
    52	// operations fall back to using the wall clock readings.
    53	//
    54	// On some systems the monotonic clock will stop if the computer goes to sleep.
    55	// On such a system, t.Sub(u) may not accurately reflect the actual
    56	// time that passed between t and u.
    57	//
    58	// Because the monotonic clock reading has no meaning outside
    59	// the current process, the serialized forms generated by t.GobEncode,
    60	// t.MarshalBinary, t.MarshalJSON, and t.MarshalText omit the monotonic
    61	// clock reading, and t.Format provides no format for it. Similarly, the
    62	// constructors time.Date, time.Parse, time.ParseInLocation, and time.Unix,
    63	// as well as the unmarshalers t.GobDecode, t.UnmarshalBinary.
    64	// t.UnmarshalJSON, and t.UnmarshalText always create times with
    65	// no monotonic clock reading.
    66	//
    67	// Note that the Go == operator compares not just the time instant but
    68	// also the Location and the monotonic clock reading. See the
    69	// documentation for the Time type for a discussion of equality
    70	// testing for Time values.
    71	//
    72	// For debugging, the result of t.String does include the monotonic
    73	// clock reading if present. If t != u because of different monotonic clock readings,
    74	// that difference will be visible when printing t.String() and u.String().
    75	//
    76	package time
    77	
    78	import (
    79		"errors"
    80		_ "unsafe" // for go:linkname
    81	)
    82	
    83	// A Time represents an instant in time with nanosecond precision.
    84	//
    85	// Programs using times should typically store and pass them as values,
    86	// not pointers. That is, time variables and struct fields should be of
    87	// type time.Time, not *time.Time.
    88	//
    89	// A Time value can be used by multiple goroutines simultaneously except
    90	// that the methods GobDecode, UnmarshalBinary, UnmarshalJSON and
    91	// UnmarshalText are not concurrency-safe.
    92	//
    93	// Time instants can be compared using the Before, After, and Equal methods.
    94	// The Sub method subtracts two instants, producing a Duration.
    95	// The Add method adds a Time and a Duration, producing a Time.
    96	//
    97	// The zero value of type Time is January 1, year 1, 00:00:00.000000000 UTC.
    98	// As this time is unlikely to come up in practice, the IsZero method gives
    99	// a simple way of detecting a time that has not been initialized explicitly.
   100	//
   101	// Each Time has associated with it a Location, consulted when computing the
   102	// presentation form of the time, such as in the Format, Hour, and Year methods.
   103	// The methods Local, UTC, and In return a Time with a specific location.
   104	// Changing the location in this way changes only the presentation; it does not
   105	// change the instant in time being denoted and therefore does not affect the
   106	// computations described in earlier paragraphs.
   107	//
   108	// Representations of a Time value saved by the GobEncode, MarshalBinary,
   109	// MarshalJSON, and MarshalText methods store the Time.Location's offset, but not
   110	// the location name. They therefore lose information about Daylight Saving Time.
   111	//
   112	// In addition to the required “wall clock” reading, a Time may contain an optional
   113	// reading of the current process's monotonic clock, to provide additional precision
   114	// for comparison or subtraction.
   115	// See the “Monotonic Clocks” section in the package documentation for details.
   116	//
   117	// Note that the Go == operator compares not just the time instant but also the
   118	// Location and the monotonic clock reading. Therefore, Time values should not
   119	// be used as map or database keys without first guaranteeing that the
   120	// identical Location has been set for all values, which can be achieved
   121	// through use of the UTC or Local method, and that the monotonic clock reading
   122	// has been stripped by setting t = t.Round(0). In general, prefer t.Equal(u)
   123	// to t == u, since t.Equal uses the most accurate comparison available and
   124	// correctly handles the case when only one of its arguments has a monotonic
   125	// clock reading.
   126	//
   127	type Time struct {
   128		// wall and ext encode the wall time seconds, wall time nanoseconds,
   129		// and optional monotonic clock reading in nanoseconds.
   130		//
   131		// From high to low bit position, wall encodes a 1-bit flag (hasMonotonic),
   132		// a 33-bit seconds field, and a 30-bit wall time nanoseconds field.
   133		// The nanoseconds field is in the range [0, 999999999].
   134		// If the hasMonotonic bit is 0, then the 33-bit field must be zero
   135		// and the full signed 64-bit wall seconds since Jan 1 year 1 is stored in ext.
   136		// If the hasMonotonic bit is 1, then the 33-bit field holds a 33-bit
   137		// unsigned wall seconds since Jan 1 year 1885, and ext holds a
   138		// signed 64-bit monotonic clock reading, nanoseconds since process start.
   139		wall uint64
   140		ext  int64
   141	
   142		// loc specifies the Location that should be used to
   143		// determine the minute, hour, month, day, and year
   144		// that correspond to this Time.
   145		// The nil location means UTC.
   146		// All UTC times are represented with loc==nil, never loc==&utcLoc.
   147		loc *Location
   148	}
   149	
   150	const (
   151		hasMonotonic = 1 << 63
   152		maxWall      = wallToInternal + (1<<33 - 1) // year 2157
   153		minWall      = wallToInternal               // year 1885
   154		nsecMask     = 1<<30 - 1
   155		nsecShift    = 30
   156	)
   157	
   158	// These helpers for manipulating the wall and monotonic clock readings
   159	// take pointer receivers, even when they don't modify the time,
   160	// to make them cheaper to call.
   161	
   162	// nsec returns the time's nanoseconds.
   163	func (t *Time) nsec() int32 {
   164		return int32(t.wall & nsecMask)
   165	}
   166	
   167	// sec returns the time's seconds since Jan 1 year 1.
   168	func (t *Time) sec() int64 {
   169		if t.wall&hasMonotonic != 0 {
   170			return wallToInternal + int64(t.wall<<1>>(nsecShift+1))
   171		}
   172		return t.ext
   173	}
   174	
   175	// unixSec returns the time's seconds since Jan 1 1970 (Unix time).
   176	func (t *Time) unixSec() int64 { return t.sec() + internalToUnix }
   177	
   178	// addSec adds d seconds to the time.
   179	func (t *Time) addSec(d int64) {
   180		if t.wall&hasMonotonic != 0 {
   181			sec := int64(t.wall << 1 >> (nsecShift + 1))
   182			dsec := sec + d
   183			if 0 <= dsec && dsec <= 1<<33-1 {
   184				t.wall = t.wall&nsecMask | uint64(dsec)<<nsecShift | hasMonotonic
   185				return
   186			}
   187			// Wall second now out of range for packed field.
   188			// Move to ext.
   189			t.stripMono()
   190		}
   191	
   192		// TODO: Check for overflow.
   193		t.ext += d
   194	}
   195	
   196	// setLoc sets the location associated with the time.
   197	func (t *Time) setLoc(loc *Location) {
   198		if loc == &utcLoc {
   199			loc = nil
   200		}
   201		t.stripMono()
   202		t.loc = loc
   203	}
   204	
   205	// stripMono strips the monotonic clock reading in t.
   206	func (t *Time) stripMono() {
   207		if t.wall&hasMonotonic != 0 {
   208			t.ext = t.sec()
   209			t.wall &= nsecMask
   210		}
   211	}
   212	
   213	// setMono sets the monotonic clock reading in t.
   214	// If t cannot hold a monotonic clock reading,
   215	// because its wall time is too large,
   216	// setMono is a no-op.
   217	func (t *Time) setMono(m int64) {
   218		if t.wall&hasMonotonic == 0 {
   219			sec := t.ext
   220			if sec < minWall || maxWall < sec {
   221				return
   222			}
   223			t.wall |= hasMonotonic | uint64(sec-minWall)<<nsecShift
   224		}
   225		t.ext = m
   226	}
   227	
   228	// mono returns t's monotonic clock reading.
   229	// It returns 0 for a missing reading.
   230	// This function is used only for testing,
   231	// so it's OK that technically 0 is a valid
   232	// monotonic clock reading as well.
   233	func (t *Time) mono() int64 {
   234		if t.wall&hasMonotonic == 0 {
   235			return 0
   236		}
   237		return t.ext
   238	}
   239	
   240	// After reports whether the time instant t is after u.
   241	func (t Time) After(u Time) bool {
   242		if t.wall&u.wall&hasMonotonic != 0 {
   243			return t.ext > u.ext
   244		}
   245		ts := t.sec()
   246		us := u.sec()
   247		return ts > us || ts == us && t.nsec() > u.nsec()
   248	}
   249	
   250	// Before reports whether the time instant t is before u.
   251	func (t Time) Before(u Time) bool {
   252		if t.wall&u.wall&hasMonotonic != 0 {
   253			return t.ext < u.ext
   254		}
   255		return t.sec() < u.sec() || t.sec() == u.sec() && t.nsec() < u.nsec()
   256	}
   257	
   258	// Equal reports whether t and u represent the same time instant.
   259	// Two times can be equal even if they are in different locations.
   260	// For example, 6:00 +0200 CEST and 4:00 UTC are Equal.
   261	// See the documentation on the Time type for the pitfalls of using == with
   262	// Time values; most code should use Equal instead.
   263	func (t Time) Equal(u Time) bool {
   264		if t.wall&u.wall&hasMonotonic != 0 {
   265			return t.ext == u.ext
   266		}
   267		return t.sec() == u.sec() && t.nsec() == u.nsec()
   268	}
   269	
   270	// A Month specifies a month of the year (January = 1, ...).
   271	type Month int
   272	
   273	const (
   274		January Month = 1 + iota
   275		February
   276		March
   277		April
   278		May
   279		June
   280		July
   281		August
   282		September
   283		October
   284		November
   285		December
   286	)
   287	
   288	var months = [...]string{
   289		"January",
   290		"February",
   291		"March",
   292		"April",
   293		"May",
   294		"June",
   295		"July",
   296		"August",
   297		"September",
   298		"October",
   299		"November",
   300		"December",
   301	}
   302	
   303	// String returns the English name of the month ("January", "February", ...).
   304	func (m Month) String() string {
   305		if January <= m && m <= December {
   306			return months[m-1]
   307		}
   308		buf := make([]byte, 20)
   309		n := fmtInt(buf, uint64(m))
   310		return "%!Month(" + string(buf[n:]) + ")"
   311	}
   312	
   313	// A Weekday specifies a day of the week (Sunday = 0, ...).
   314	type Weekday int
   315	
   316	const (
   317		Sunday Weekday = iota
   318		Monday
   319		Tuesday
   320		Wednesday
   321		Thursday
   322		Friday
   323		Saturday
   324	)
   325	
   326	var days = [...]string{
   327		"Sunday",
   328		"Monday",
   329		"Tuesday",
   330		"Wednesday",
   331		"Thursday",
   332		"Friday",
   333		"Saturday",
   334	}
   335	
   336	// String returns the English name of the day ("Sunday", "Monday", ...).
   337	func (d Weekday) String() string {
   338		if Sunday <= d && d <= Saturday {
   339			return days[d]
   340		}
   341		buf := make([]byte, 20)
   342		n := fmtInt(buf, uint64(d))
   343		return "%!Weekday(" + string(buf[n:]) + ")"
   344	}
   345	
   346	// Computations on time.
   347	//
   348	// The zero value for a Time is defined to be
   349	//	January 1, year 1, 00:00:00.000000000 UTC
   350	// which (1) looks like a zero, or as close as you can get in a date
   351	// (1-1-1 00:00:00 UTC), (2) is unlikely enough to arise in practice to
   352	// be a suitable "not set" sentinel, unlike Jan 1 1970, and (3) has a
   353	// non-negative year even in time zones west of UTC, unlike 1-1-0
   354	// 00:00:00 UTC, which would be 12-31-(-1) 19:00:00 in New York.
   355	//
   356	// The zero Time value does not force a specific epoch for the time
   357	// representation. For example, to use the Unix epoch internally, we
   358	// could define that to distinguish a zero value from Jan 1 1970, that
   359	// time would be represented by sec=-1, nsec=1e9. However, it does
   360	// suggest a representation, namely using 1-1-1 00:00:00 UTC as the
   361	// epoch, and that's what we do.
   362	//
   363	// The Add and Sub computations are oblivious to the choice of epoch.
   364	//
   365	// The presentation computations - year, month, minute, and so on - all
   366	// rely heavily on division and modulus by positive constants. For
   367	// calendrical calculations we want these divisions to round down, even
   368	// for negative values, so that the remainder is always positive, but
   369	// Go's division (like most hardware division instructions) rounds to
   370	// zero. We can still do those computations and then adjust the result
   371	// for a negative numerator, but it's annoying to write the adjustment
   372	// over and over. Instead, we can change to a different epoch so long
   373	// ago that all the times we care about will be positive, and then round
   374	// to zero and round down coincide. These presentation routines already
   375	// have to add the zone offset, so adding the translation to the
   376	// alternate epoch is cheap. For example, having a non-negative time t
   377	// means that we can write
   378	//
   379	//	sec = t % 60
   380	//
   381	// instead of
   382	//
   383	//	sec = t % 60
   384	//	if sec < 0 {
   385	//		sec += 60
   386	//	}
   387	//
   388	// everywhere.
   389	//
   390	// The calendar runs on an exact 400 year cycle: a 400-year calendar
   391	// printed for 1970-2369 will apply as well to 2370-2769. Even the days
   392	// of the week match up. It simplifies the computations to choose the
   393	// cycle boundaries so that the exceptional years are always delayed as
   394	// long as possible. That means choosing a year equal to 1 mod 400, so
   395	// that the first leap year is the 4th year, the first missed leap year
   396	// is the 100th year, and the missed missed leap year is the 400th year.
   397	// So we'd prefer instead to print a calendar for 2001-2400 and reuse it
   398	// for 2401-2800.
   399	//
   400	// Finally, it's convenient if the delta between the Unix epoch and
   401	// long-ago epoch is representable by an int64 constant.
   402	//
   403	// These three considerations—choose an epoch as early as possible, that
   404	// uses a year equal to 1 mod 400, and that is no more than 2⁶³ seconds
   405	// earlier than 1970—bring us to the year -292277022399. We refer to
   406	// this year as the absolute zero year, and to times measured as a uint64
   407	// seconds since this year as absolute times.
   408	//
   409	// Times measured as an int64 seconds since the year 1—the representation
   410	// used for Time's sec field—are called internal times.
   411	//
   412	// Times measured as an int64 seconds since the year 1970 are called Unix
   413	// times.
   414	//
   415	// It is tempting to just use the year 1 as the absolute epoch, defining
   416	// that the routines are only valid for years >= 1. However, the
   417	// routines would then be invalid when displaying the epoch in time zones
   418	// west of UTC, since it is year 0. It doesn't seem tenable to say that
   419	// printing the zero time correctly isn't supported in half the time
   420	// zones. By comparison, it's reasonable to mishandle some times in
   421	// the year -292277022399.
   422	//
   423	// All this is opaque to clients of the API and can be changed if a
   424	// better implementation presents itself.
   425	
   426	const (
   427		// The unsigned zero year for internal calculations.
   428		// Must be 1 mod 400, and times before it will not compute correctly,
   429		// but otherwise can be changed at will.
   430		absoluteZeroYear = -292277022399
   431	
   432		// The year of the zero Time.
   433		// Assumed by the unixToInternal computation below.
   434		internalYear = 1
   435	
   436		// Offsets to convert between internal and absolute or Unix times.
   437		absoluteToInternal int64 = (absoluteZeroYear - internalYear) * 365.2425 * secondsPerDay
   438		internalToAbsolute       = -absoluteToInternal
   439	
   440		unixToInternal int64 = (1969*365 + 1969/4 - 1969/100 + 1969/400) * secondsPerDay
   441		internalToUnix int64 = -unixToInternal
   442	
   443		wallToInternal int64 = (1884*365 + 1884/4 - 1884/100 + 1884/400) * secondsPerDay
   444		internalToWall int64 = -wallToInternal
   445	)
   446	
   447	// IsZero reports whether t represents the zero time instant,
   448	// January 1, year 1, 00:00:00 UTC.
   449	func (t Time) IsZero() bool {
   450		return t.sec() == 0 && t.nsec() == 0
   451	}
   452	
   453	// abs returns the time t as an absolute time, adjusted by the zone offset.
   454	// It is called when computing a presentation property like Month or Hour.
   455	func (t Time) abs() uint64 {
   456		l := t.loc
   457		// Avoid function calls when possible.
   458		if l == nil || l == &localLoc {
   459			l = l.get()
   460		}
   461		sec := t.unixSec()
   462		if l != &utcLoc {
   463			if l.cacheZone != nil && l.cacheStart <= sec && sec < l.cacheEnd {
   464				sec += int64(l.cacheZone.offset)
   465			} else {
   466				_, offset, _, _ := l.lookup(sec)
   467				sec += int64(offset)
   468			}
   469		}
   470		return uint64(sec + (unixToInternal + internalToAbsolute))
   471	}
   472	
   473	// locabs is a combination of the Zone and abs methods,
   474	// extracting both return values from a single zone lookup.
   475	func (t Time) locabs() (name string, offset int, abs uint64) {
   476		l := t.loc
   477		if l == nil || l == &localLoc {
   478			l = l.get()
   479		}
   480		// Avoid function call if we hit the local time cache.
   481		sec := t.unixSec()
   482		if l != &utcLoc {
   483			if l.cacheZone != nil && l.cacheStart <= sec && sec < l.cacheEnd {
   484				name = l.cacheZone.name
   485				offset = l.cacheZone.offset
   486			} else {
   487				name, offset, _, _ = l.lookup(sec)
   488			}
   489			sec += int64(offset)
   490		} else {
   491			name = "UTC"
   492		}
   493		abs = uint64(sec + (unixToInternal + internalToAbsolute))
   494		return
   495	}
   496	
   497	// Date returns the year, month, and day in which t occurs.
   498	func (t Time) Date() (year int, month Month, day int) {
   499		year, month, day, _ = t.date(true)
   500		return
   501	}
   502	
   503	// Year returns the year in which t occurs.
   504	func (t Time) Year() int {
   505		year, _, _, _ := t.date(false)
   506		return year
   507	}
   508	
   509	// Month returns the month of the year specified by t.
   510	func (t Time) Month() Month {
   511		_, month, _, _ := t.date(true)
   512		return month
   513	}
   514	
   515	// Day returns the day of the month specified by t.
   516	func (t Time) Day() int {
   517		_, _, day, _ := t.date(true)
   518		return day
   519	}
   520	
   521	// Weekday returns the day of the week specified by t.
   522	func (t Time) Weekday() Weekday {
   523		return absWeekday(t.abs())
   524	}
   525	
   526	// absWeekday is like Weekday but operates on an absolute time.
   527	func absWeekday(abs uint64) Weekday {
   528		// January 1 of the absolute year, like January 1 of 2001, was a Monday.
   529		sec := (abs + uint64(Monday)*secondsPerDay) % secondsPerWeek
   530		return Weekday(int(sec) / secondsPerDay)
   531	}
   532	
   533	// ISOWeek returns the ISO 8601 year and week number in which t occurs.
   534	// Week ranges from 1 to 53. Jan 01 to Jan 03 of year n might belong to
   535	// week 52 or 53 of year n-1, and Dec 29 to Dec 31 might belong to week 1
   536	// of year n+1.
   537	func (t Time) ISOWeek() (year, week int) {
   538		year, month, day, yday := t.date(true)
   539		wday := int(t.Weekday()+6) % 7 // weekday but Monday = 0.
   540		const (
   541			Mon int = iota
   542			Tue
   543			Wed
   544			Thu
   545			Fri
   546			Sat
   547			Sun
   548		)
   549	
   550		// Calculate week as number of Mondays in year up to
   551		// and including today, plus 1 because the first week is week 0.
   552		// Putting the + 1 inside the numerator as a + 7 keeps the
   553		// numerator from being negative, which would cause it to
   554		// round incorrectly.
   555		week = (yday - wday + 7) / 7
   556	
   557		// The week number is now correct under the assumption
   558		// that the first Monday of the year is in week 1.
   559		// If Jan 1 is a Tuesday, Wednesday, or Thursday, the first Monday
   560		// is actually in week 2.
   561		jan1wday := (wday - yday + 7*53) % 7
   562		if Tue <= jan1wday && jan1wday <= Thu {
   563			week++
   564		}
   565	
   566		// If the week number is still 0, we're in early January but in
   567		// the last week of last year.
   568		if week == 0 {
   569			year--
   570			week = 52
   571			// A year has 53 weeks when Jan 1 or Dec 31 is a Thursday,
   572			// meaning Jan 1 of the next year is a Friday
   573			// or it was a leap year and Jan 1 of the next year is a Saturday.
   574			if jan1wday == Fri || (jan1wday == Sat && isLeap(year)) {
   575				week++
   576			}
   577		}
   578	
   579		// December 29 to 31 are in week 1 of next year if
   580		// they are after the last Thursday of the year and
   581		// December 31 is a Monday, Tuesday, or Wednesday.
   582		if month == December && day >= 29 && wday < Thu {
   583			if dec31wday := (wday + 31 - day) % 7; Mon <= dec31wday && dec31wday <= Wed {
   584				year++
   585				week = 1
   586			}
   587		}
   588	
   589		return
   590	}
   591	
   592	// Clock returns the hour, minute, and second within the day specified by t.
   593	func (t Time) Clock() (hour, min, sec int) {
   594		return absClock(t.abs())
   595	}
   596	
   597	// absClock is like clock but operates on an absolute time.
   598	func absClock(abs uint64) (hour, min, sec int) {
   599		sec = int(abs % secondsPerDay)
   600		hour = sec / secondsPerHour
   601		sec -= hour * secondsPerHour
   602		min = sec / secondsPerMinute
   603		sec -= min * secondsPerMinute
   604		return
   605	}
   606	
   607	// Hour returns the hour within the day specified by t, in the range [0, 23].
   608	func (t Time) Hour() int {
   609		return int(t.abs()%secondsPerDay) / secondsPerHour
   610	}
   611	
   612	// Minute returns the minute offset within the hour specified by t, in the range [0, 59].
   613	func (t Time) Minute() int {
   614		return int(t.abs()%secondsPerHour) / secondsPerMinute
   615	}
   616	
   617	// Second returns the second offset within the minute specified by t, in the range [0, 59].
   618	func (t Time) Second() int {
   619		return int(t.abs() % secondsPerMinute)
   620	}
   621	
   622	// Nanosecond returns the nanosecond offset within the second specified by t,
   623	// in the range [0, 999999999].
   624	func (t Time) Nanosecond() int {
   625		return int(t.nsec())
   626	}
   627	
   628	// YearDay returns the day of the year specified by t, in the range [1,365] for non-leap years,
   629	// and [1,366] in leap years.
   630	func (t Time) YearDay() int {
   631		_, _, _, yday := t.date(false)
   632		return yday + 1
   633	}
   634	
   635	// A Duration represents the elapsed time between two instants
   636	// as an int64 nanosecond count. The representation limits the
   637	// largest representable duration to approximately 290 years.
   638	type Duration int64
   639	
   640	const (
   641		minDuration Duration = -1 << 63
   642		maxDuration Duration = 1<<63 - 1
   643	)
   644	
   645	// Common durations. There is no definition for units of Day or larger
   646	// to avoid confusion across daylight savings time zone transitions.
   647	//
   648	// To count the number of units in a Duration, divide:
   649	//	second := time.Second
   650	//	fmt.Print(int64(second/time.Millisecond)) // prints 1000
   651	//
   652	// To convert an integer number of units to a Duration, multiply:
   653	//	seconds := 10
   654	//	fmt.Print(time.Duration(seconds)*time.Second) // prints 10s
   655	//
   656	const (
   657		Nanosecond  Duration = 1
   658		Microsecond          = 1000 * Nanosecond
   659		Millisecond          = 1000 * Microsecond
   660		Second               = 1000 * Millisecond
   661		Minute               = 60 * Second
   662		Hour                 = 60 * Minute
   663	)
   664	
   665	// String returns a string representing the duration in the form "72h3m0.5s".
   666	// Leading zero units are omitted. As a special case, durations less than one
   667	// second format use a smaller unit (milli-, micro-, or nanoseconds) to ensure
   668	// that the leading digit is non-zero. The zero duration formats as 0s.
   669	func (d Duration) String() string {
   670		// Largest time is 2540400h10m10.000000000s
   671		var buf [32]byte
   672		w := len(buf)
   673	
   674		u := uint64(d)
   675		neg := d < 0
   676		if neg {
   677			u = -u
   678		}
   679	
   680		if u < uint64(Second) {
   681			// Special case: if duration is smaller than a second,
   682			// use smaller units, like 1.2ms
   683			var prec int
   684			w--
   685			buf[w] = 's'
   686			w--
   687			switch {
   688			case u == 0:
   689				return "0s"
   690			case u < uint64(Microsecond):
   691				// print nanoseconds
   692				prec = 0
   693				buf[w] = 'n'
   694			case u < uint64(Millisecond):
   695				// print microseconds
   696				prec = 3
   697				// U+00B5 'µ' micro sign == 0xC2 0xB5
   698				w-- // Need room for two bytes.
   699				copy(buf[w:], "µ")
   700			default:
   701				// print milliseconds
   702				prec = 6
   703				buf[w] = 'm'
   704			}
   705			w, u = fmtFrac(buf[:w], u, prec)
   706			w = fmtInt(buf[:w], u)
   707		} else {
   708			w--
   709			buf[w] = 's'
   710	
   711			w, u = fmtFrac(buf[:w], u, 9)
   712	
   713			// u is now integer seconds
   714			w = fmtInt(buf[:w], u%60)
   715			u /= 60
   716	
   717			// u is now integer minutes
   718			if u > 0 {
   719				w--
   720				buf[w] = 'm'
   721				w = fmtInt(buf[:w], u%60)
   722				u /= 60
   723	
   724				// u is now integer hours
   725				// Stop at hours because days can be different lengths.
   726				if u > 0 {
   727					w--
   728					buf[w] = 'h'
   729					w = fmtInt(buf[:w], u)
   730				}
   731			}
   732		}
   733	
   734		if neg {
   735			w--
   736			buf[w] = '-'
   737		}
   738	
   739		return string(buf[w:])
   740	}
   741	
   742	// fmtFrac formats the fraction of v/10**prec (e.g., ".12345") into the
   743	// tail of buf, omitting trailing zeros. It omits the decimal
   744	// point too when the fraction is 0. It returns the index where the
   745	// output bytes begin and the value v/10**prec.
   746	func fmtFrac(buf []byte, v uint64, prec int) (nw int, nv uint64) {
   747		// Omit trailing zeros up to and including decimal point.
   748		w := len(buf)
   749		print := false
   750		for i := 0; i < prec; i++ {
   751			digit := v % 10
   752			print = print || digit != 0
   753			if print {
   754				w--
   755				buf[w] = byte(digit) + '0'
   756			}
   757			v /= 10
   758		}
   759		if print {
   760			w--
   761			buf[w] = '.'
   762		}
   763		return w, v
   764	}
   765	
   766	// fmtInt formats v into the tail of buf.
   767	// It returns the index where the output begins.
   768	func fmtInt(buf []byte, v uint64) int {
   769		w := len(buf)
   770		if v == 0 {
   771			w--
   772			buf[w] = '0'
   773		} else {
   774			for v > 0 {
   775				w--
   776				buf[w] = byte(v%10) + '0'
   777				v /= 10
   778			}
   779		}
   780		return w
   781	}
   782	
   783	// Nanoseconds returns the duration as an integer nanosecond count.
   784	func (d Duration) Nanoseconds() int64 { return int64(d) }
   785	
   786	// Microseconds returns the duration as an integer microsecond count.
   787	func (d Duration) Microseconds() int64 { return int64(d) / 1e3 }
   788	
   789	// Milliseconds returns the duration as an integer millisecond count.
   790	func (d Duration) Milliseconds() int64 { return int64(d) / 1e6 }
   791	
   792	// These methods return float64 because the dominant
   793	// use case is for printing a floating point number like 1.5s, and
   794	// a truncation to integer would make them not useful in those cases.
   795	// Splitting the integer and fraction ourselves guarantees that
   796	// converting the returned float64 to an integer rounds the same
   797	// way that a pure integer conversion would have, even in cases
   798	// where, say, float64(d.Nanoseconds())/1e9 would have rounded
   799	// differently.
   800	
   801	// Seconds returns the duration as a floating point number of seconds.
   802	func (d Duration) Seconds() float64 {
   803		sec := d / Second
   804		nsec := d % Second
   805		return float64(sec) + float64(nsec)/1e9
   806	}
   807	
   808	// Minutes returns the duration as a floating point number of minutes.
   809	func (d Duration) Minutes() float64 {
   810		min := d / Minute
   811		nsec := d % Minute
   812		return float64(min) + float64(nsec)/(60*1e9)
   813	}
   814	
   815	// Hours returns the duration as a floating point number of hours.
   816	func (d Duration) Hours() float64 {
   817		hour := d / Hour
   818		nsec := d % Hour
   819		return float64(hour) + float64(nsec)/(60*60*1e9)
   820	}
   821	
   822	// Truncate returns the result of rounding d toward zero to a multiple of m.
   823	// If m <= 0, Truncate returns d unchanged.
   824	func (d Duration) Truncate(m Duration) Duration {
   825		if m <= 0 {
   826			return d
   827		}
   828		return d - d%m
   829	}
   830	
   831	// lessThanHalf reports whether x+x < y but avoids overflow,
   832	// assuming x and y are both positive (Duration is signed).
   833	func lessThanHalf(x, y Duration) bool {
   834		return uint64(x)+uint64(x) < uint64(y)
   835	}
   836	
   837	// Round returns the result of rounding d to the nearest multiple of m.
   838	// The rounding behavior for halfway values is to round away from zero.
   839	// If the result exceeds the maximum (or minimum)
   840	// value that can be stored in a Duration,
   841	// Round returns the maximum (or minimum) duration.
   842	// If m <= 0, Round returns d unchanged.
   843	func (d Duration) Round(m Duration) Duration {
   844		if m <= 0 {
   845			return d
   846		}
   847		r := d % m
   848		if d < 0 {
   849			r = -r
   850			if lessThanHalf(r, m) {
   851				return d + r
   852			}
   853			if d1 := d - m + r; d1 < d {
   854				return d1
   855			}
   856			return minDuration // overflow
   857		}
   858		if lessThanHalf(r, m) {
   859			return d - r
   860		}
   861		if d1 := d + m - r; d1 > d {
   862			return d1
   863		}
   864		return maxDuration // overflow
   865	}
   866	
   867	// Add returns the time t+d.
   868	func (t Time) Add(d Duration) Time {
   869		dsec := int64(d / 1e9)
   870		nsec := t.nsec() + int32(d%1e9)
   871		if nsec >= 1e9 {
   872			dsec++
   873			nsec -= 1e9
   874		} else if nsec < 0 {
   875			dsec--
   876			nsec += 1e9
   877		}
   878		t.wall = t.wall&^nsecMask | uint64(nsec) // update nsec
   879		t.addSec(dsec)
   880		if t.wall&hasMonotonic != 0 {
   881			te := t.ext + int64(d)
   882			if d < 0 && te > t.ext || d > 0 && te < t.ext {
   883				// Monotonic clock reading now out of range; degrade to wall-only.
   884				t.stripMono()
   885			} else {
   886				t.ext = te
   887			}
   888		}
   889		return t
   890	}
   891	
   892	// Sub returns the duration t-u. If the result exceeds the maximum (or minimum)
   893	// value that can be stored in a Duration, the maximum (or minimum) duration
   894	// will be returned.
   895	// To compute t-d for a duration d, use t.Add(-d).
   896	func (t Time) Sub(u Time) Duration {
   897		if t.wall&u.wall&hasMonotonic != 0 {
   898			te := t.ext
   899			ue := u.ext
   900			d := Duration(te - ue)
   901			if d < 0 && te > ue {
   902				return maxDuration // t - u is positive out of range
   903			}
   904			if d > 0 && te < ue {
   905				return minDuration // t - u is negative out of range
   906			}
   907			return d
   908		}
   909		d := Duration(t.sec()-u.sec())*Second + Duration(t.nsec()-u.nsec())
   910		// Check for overflow or underflow.
   911		switch {
   912		case u.Add(d).Equal(t):
   913			return d // d is correct
   914		case t.Before(u):
   915			return minDuration // t - u is negative out of range
   916		default:
   917			return maxDuration // t - u is positive out of range
   918		}
   919	}
   920	
   921	// Since returns the time elapsed since t.
   922	// It is shorthand for time.Now().Sub(t).
   923	func Since(t Time) Duration {
   924		var now Time
   925		if t.wall&hasMonotonic != 0 {
   926			// Common case optimization: if t has monotonic time, then Sub will use only it.
   927			now = Time{hasMonotonic, runtimeNano() - startNano, nil}
   928		} else {
   929			now = Now()
   930		}
   931		return now.Sub(t)
   932	}
   933	
   934	// Until returns the duration until t.
   935	// It is shorthand for t.Sub(time.Now()).
   936	func Until(t Time) Duration {
   937		var now Time
   938		if t.wall&hasMonotonic != 0 {
   939			// Common case optimization: if t has monotonic time, then Sub will use only it.
   940			now = Time{hasMonotonic, runtimeNano() - startNano, nil}
   941		} else {
   942			now = Now()
   943		}
   944		return t.Sub(now)
   945	}
   946	
   947	// AddDate returns the time corresponding to adding the
   948	// given number of years, months, and days to t.
   949	// For example, AddDate(-1, 2, 3) applied to January 1, 2011
   950	// returns March 4, 2010.
   951	//
   952	// AddDate normalizes its result in the same way that Date does,
   953	// so, for example, adding one month to October 31 yields
   954	// December 1, the normalized form for November 31.
   955	func (t Time) AddDate(years int, months int, days int) Time {
   956		year, month, day := t.Date()
   957		hour, min, sec := t.Clock()
   958		return Date(year+years, month+Month(months), day+days, hour, min, sec, int(t.nsec()), t.Location())
   959	}
   960	
   961	const (
   962		secondsPerMinute = 60
   963		secondsPerHour   = 60 * secondsPerMinute
   964		secondsPerDay    = 24 * secondsPerHour
   965		secondsPerWeek   = 7 * secondsPerDay
   966		daysPer400Years  = 365*400 + 97
   967		daysPer100Years  = 365*100 + 24
   968		daysPer4Years    = 365*4 + 1
   969	)
   970	
   971	// date computes the year, day of year, and when full=true,
   972	// the month and day in which t occurs.
   973	func (t Time) date(full bool) (year int, month Month, day int, yday int) {
   974		return absDate(t.abs(), full)
   975	}
   976	
   977	// absDate is like date but operates on an absolute time.
   978	func absDate(abs uint64, full bool) (year int, month Month, day int, yday int) {
   979		// Split into time and day.
   980		d := abs / secondsPerDay
   981	
   982		// Account for 400 year cycles.
   983		n := d / daysPer400Years
   984		y := 400 * n
   985		d -= daysPer400Years * n
   986	
   987		// Cut off 100-year cycles.
   988		// The last cycle has one extra leap year, so on the last day
   989		// of that year, day / daysPer100Years will be 4 instead of 3.
   990		// Cut it back down to 3 by subtracting n>>2.
   991		n = d / daysPer100Years
   992		n -= n >> 2
   993		y += 100 * n
   994		d -= daysPer100Years * n
   995	
   996		// Cut off 4-year cycles.
   997		// The last cycle has a missing leap year, which does not
   998		// affect the computation.
   999		n = d / daysPer4Years
  1000		y += 4 * n
  1001		d -= daysPer4Years * n
  1002	
  1003		// Cut off years within a 4-year cycle.
  1004		// The last year is a leap year, so on the last day of that year,
  1005		// day / 365 will be 4 instead of 3. Cut it back down to 3
  1006		// by subtracting n>>2.
  1007		n = d / 365
  1008		n -= n >> 2
  1009		y += n
  1010		d -= 365 * n
  1011	
  1012		year = int(int64(y) + absoluteZeroYear)
  1013		yday = int(d)
  1014	
  1015		if !full {
  1016			return
  1017		}
  1018	
  1019		day = yday
  1020		if isLeap(year) {
  1021			// Leap year
  1022			switch {
  1023			case day > 31+29-1:
  1024				// After leap day; pretend it wasn't there.
  1025				day--
  1026			case day == 31+29-1:
  1027				// Leap day.
  1028				month = February
  1029				day = 29
  1030				return
  1031			}
  1032		}
  1033	
  1034		// Estimate month on assumption that every month has 31 days.
  1035		// The estimate may be too low by at most one month, so adjust.
  1036		month = Month(day / 31)
  1037		end := int(daysBefore[month+1])
  1038		var begin int
  1039		if day >= end {
  1040			month++
  1041			begin = end
  1042		} else {
  1043			begin = int(daysBefore[month])
  1044		}
  1045	
  1046		month++ // because January is 1
  1047		day = day - begin + 1
  1048		return
  1049	}
  1050	
  1051	// daysBefore[m] counts the number of days in a non-leap year
  1052	// before month m begins. There is an entry for m=12, counting
  1053	// the number of days before January of next year (365).
  1054	var daysBefore = [...]int32{
  1055		0,
  1056		31,
  1057		31 + 28,
  1058		31 + 28 + 31,
  1059		31 + 28 + 31 + 30,
  1060		31 + 28 + 31 + 30 + 31,
  1061		31 + 28 + 31 + 30 + 31 + 30,
  1062		31 + 28 + 31 + 30 + 31 + 30 + 31,
  1063		31 + 28 + 31 + 30 + 31 + 30 + 31 + 31,
  1064		31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30,
  1065		31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31,
  1066		31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30,
  1067		31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30 + 31,
  1068	}
  1069	
  1070	func daysIn(m Month, year int) int {
  1071		if m == February && isLeap(year) {
  1072			return 29
  1073		}
  1074		return int(daysBefore[m] - daysBefore[m-1])
  1075	}
  1076	
  1077	// Provided by package runtime.
  1078	func now() (sec int64, nsec int32, mono int64)
  1079	
  1080	// runtimeNano returns the current value of the runtime clock in nanoseconds.
  1081	//go:linkname runtimeNano runtime.nanotime
  1082	func runtimeNano() int64
  1083	
  1084	// Monotonic times are reported as offsets from startNano.
  1085	// We initialize startNano to runtimeNano() - 1 so that on systems where
  1086	// monotonic time resolution is fairly low (e.g. Windows 2008
  1087	// which appears to have a default resolution of 15ms),
  1088	// we avoid ever reporting a monotonic time of 0.
  1089	// (Callers may want to use 0 as "time not set".)
  1090	var startNano int64 = runtimeNano() - 1
  1091	
  1092	// Now returns the current local time.
  1093	func Now() Time {
  1094		sec, nsec, mono := now()
  1095		mono -= startNano
  1096		sec += unixToInternal - minWall
  1097		if uint64(sec)>>33 != 0 {
  1098			return Time{uint64(nsec), sec + minWall, Local}
  1099		}
  1100		return Time{hasMonotonic | uint64(sec)<<nsecShift | uint64(nsec), mono, Local}
  1101	}
  1102	
  1103	func unixTime(sec int64, nsec int32) Time {
  1104		return Time{uint64(nsec), sec + unixToInternal, Local}
  1105	}
  1106	
  1107	// UTC returns t with the location set to UTC.
  1108	func (t Time) UTC() Time {
  1109		t.setLoc(&utcLoc)
  1110		return t
  1111	}
  1112	
  1113	// Local returns t with the location set to local time.
  1114	func (t Time) Local() Time {
  1115		t.setLoc(Local)
  1116		return t
  1117	}
  1118	
  1119	// In returns a copy of t representing the same time instant, but
  1120	// with the copy's location information set to loc for display
  1121	// purposes.
  1122	//
  1123	// In panics if loc is nil.
  1124	func (t Time) In(loc *Location) Time {
  1125		if loc == nil {
  1126			panic("time: missing Location in call to Time.In")
  1127		}
  1128		t.setLoc(loc)
  1129		return t
  1130	}
  1131	
  1132	// Location returns the time zone information associated with t.
  1133	func (t Time) Location() *Location {
  1134		l := t.loc
  1135		if l == nil {
  1136			l = UTC
  1137		}
  1138		return l
  1139	}
  1140	
  1141	// Zone computes the time zone in effect at time t, returning the abbreviated
  1142	// name of the zone (such as "CET") and its offset in seconds east of UTC.
  1143	func (t Time) Zone() (name string, offset int) {
  1144		name, offset, _, _ = t.loc.lookup(t.unixSec())
  1145		return
  1146	}
  1147	
  1148	// Unix returns t as a Unix time, the number of seconds elapsed
  1149	// since January 1, 1970 UTC. The result does not depend on the
  1150	// location associated with t.
  1151	func (t Time) Unix() int64 {
  1152		return t.unixSec()
  1153	}
  1154	
  1155	// UnixNano returns t as a Unix time, the number of nanoseconds elapsed
  1156	// since January 1, 1970 UTC. The result is undefined if the Unix time
  1157	// in nanoseconds cannot be represented by an int64 (a date before the year
  1158	// 1678 or after 2262). Note that this means the result of calling UnixNano
  1159	// on the zero Time is undefined. The result does not depend on the
  1160	// location associated with t.
  1161	func (t Time) UnixNano() int64 {
  1162		return (t.unixSec())*1e9 + int64(t.nsec())
  1163	}
  1164	
  1165	const timeBinaryVersion byte = 1
  1166	
  1167	// MarshalBinary implements the encoding.BinaryMarshaler interface.
  1168	func (t Time) MarshalBinary() ([]byte, error) {
  1169		var offsetMin int16 // minutes east of UTC. -1 is UTC.
  1170	
  1171		if t.Location() == UTC {
  1172			offsetMin = -1
  1173		} else {
  1174			_, offset := t.Zone()
  1175			if offset%60 != 0 {
  1176				return nil, errors.New("Time.MarshalBinary: zone offset has fractional minute")
  1177			}
  1178			offset /= 60
  1179			if offset < -32768 || offset == -1 || offset > 32767 {
  1180				return nil, errors.New("Time.MarshalBinary: unexpected zone offset")
  1181			}
  1182			offsetMin = int16(offset)
  1183		}
  1184	
  1185		sec := t.sec()
  1186		nsec := t.nsec()
  1187		enc := []byte{
  1188			timeBinaryVersion, // byte 0 : version
  1189			byte(sec >> 56),   // bytes 1-8: seconds
  1190			byte(sec >> 48),
  1191			byte(sec >> 40),
  1192			byte(sec >> 32),
  1193			byte(sec >> 24),
  1194			byte(sec >> 16),
  1195			byte(sec >> 8),
  1196			byte(sec),
  1197			byte(nsec >> 24), // bytes 9-12: nanoseconds
  1198			byte(nsec >> 16),
  1199			byte(nsec >> 8),
  1200			byte(nsec),
  1201			byte(offsetMin >> 8), // bytes 13-14: zone offset in minutes
  1202			byte(offsetMin),
  1203		}
  1204	
  1205		return enc, nil
  1206	}
  1207	
  1208	// UnmarshalBinary implements the encoding.BinaryUnmarshaler interface.
  1209	func (t *Time) UnmarshalBinary(data []byte) error {
  1210		buf := data
  1211		if len(buf) == 0 {
  1212			return errors.New("Time.UnmarshalBinary: no data")
  1213		}
  1214	
  1215		if buf[0] != timeBinaryVersion {
  1216			return errors.New("Time.UnmarshalBinary: unsupported version")
  1217		}
  1218	
  1219		if len(buf) != /*version*/ 1+ /*sec*/ 8+ /*nsec*/ 4+ /*zone offset*/ 2 {
  1220			return errors.New("Time.UnmarshalBinary: invalid length")
  1221		}
  1222	
  1223		buf = buf[1:]
  1224		sec := int64(buf[7]) | int64(buf[6])<<8 | int64(buf[5])<<16 | int64(buf[4])<<24 |
  1225			int64(buf[3])<<32 | int64(buf[2])<<40 | int64(buf[1])<<48 | int64(buf[0])<<56
  1226	
  1227		buf = buf[8:]
  1228		nsec := int32(buf[3]) | int32(buf[2])<<8 | int32(buf[1])<<16 | int32(buf[0])<<24
  1229	
  1230		buf = buf[4:]
  1231		offset := int(int16(buf[1])|int16(buf[0])<<8) * 60
  1232	
  1233		*t = Time{}
  1234		t.wall = uint64(nsec)
  1235		t.ext = sec
  1236	
  1237		if offset == -1*60 {
  1238			t.setLoc(&utcLoc)
  1239		} else if _, localoff, _, _ := Local.lookup(t.unixSec()); offset == localoff {
  1240			t.setLoc(Local)
  1241		} else {
  1242			t.setLoc(FixedZone("", offset))
  1243		}
  1244	
  1245		return nil
  1246	}
  1247	
  1248	// TODO(rsc): Remove GobEncoder, GobDecoder, MarshalJSON, UnmarshalJSON in Go 2.
  1249	// The same semantics will be provided by the generic MarshalBinary, MarshalText,
  1250	// UnmarshalBinary, UnmarshalText.
  1251	
  1252	// GobEncode implements the gob.GobEncoder interface.
  1253	func (t Time) GobEncode() ([]byte, error) {
  1254		return t.MarshalBinary()
  1255	}
  1256	
  1257	// GobDecode implements the gob.GobDecoder interface.
  1258	func (t *Time) GobDecode(data []byte) error {
  1259		return t.UnmarshalBinary(data)
  1260	}
  1261	
  1262	// MarshalJSON implements the json.Marshaler interface.
  1263	// The time is a quoted string in RFC 3339 format, with sub-second precision added if present.
  1264	func (t Time) MarshalJSON() ([]byte, error) {
  1265		if y := t.Year(); y < 0 || y >= 10000 {
  1266			// RFC 3339 is clear that years are 4 digits exactly.
  1267			// See golang.org/issue/4556#c15 for more discussion.
  1268			return nil, errors.New("Time.MarshalJSON: year outside of range [0,9999]")
  1269		}
  1270	
  1271		b := make([]byte, 0, len(RFC3339Nano)+2)
  1272		b = append(b, '"')
  1273		b = t.AppendFormat(b, RFC3339Nano)
  1274		b = append(b, '"')
  1275		return b, nil
  1276	}
  1277	
  1278	// UnmarshalJSON implements the json.Unmarshaler interface.
  1279	// The time is expected to be a quoted string in RFC 3339 format.
  1280	func (t *Time) UnmarshalJSON(data []byte) error {
  1281		// Ignore null, like in the main JSON package.
  1282		if string(data) == "null" {
  1283			return nil
  1284		}
  1285		// Fractional seconds are handled implicitly by Parse.
  1286		var err error
  1287		*t, err = Parse(`"`+RFC3339+`"`, string(data))
  1288		return err
  1289	}
  1290	
  1291	// MarshalText implements the encoding.TextMarshaler interface.
  1292	// The time is formatted in RFC 3339 format, with sub-second precision added if present.
  1293	func (t Time) MarshalText() ([]byte, error) {
  1294		if y := t.Year(); y < 0 || y >= 10000 {
  1295			return nil, errors.New("Time.MarshalText: year outside of range [0,9999]")
  1296		}
  1297	
  1298		b := make([]byte, 0, len(RFC3339Nano))
  1299		return t.AppendFormat(b, RFC3339Nano), nil
  1300	}
  1301	
  1302	// UnmarshalText implements the encoding.TextUnmarshaler interface.
  1303	// The time is expected to be in RFC 3339 format.
  1304	func (t *Time) UnmarshalText(data []byte) error {
  1305		// Fractional seconds are handled implicitly by Parse.
  1306		var err error
  1307		*t, err = Parse(RFC3339, string(data))
  1308		return err
  1309	}
  1310	
  1311	// Unix returns the local Time corresponding to the given Unix time,
  1312	// sec seconds and nsec nanoseconds since January 1, 1970 UTC.
  1313	// It is valid to pass nsec outside the range [0, 999999999].
  1314	// Not all sec values have a corresponding time value. One such
  1315	// value is 1<<63-1 (the largest int64 value).
  1316	func Unix(sec int64, nsec int64) Time {
  1317		if nsec < 0 || nsec >= 1e9 {
  1318			n := nsec / 1e9
  1319			sec += n
  1320			nsec -= n * 1e9
  1321			if nsec < 0 {
  1322				nsec += 1e9
  1323				sec--
  1324			}
  1325		}
  1326		return unixTime(sec, int32(nsec))
  1327	}
  1328	
  1329	func isLeap(year int) bool {
  1330		return year%4 == 0 && (year%100 != 0 || year%400 == 0)
  1331	}
  1332	
  1333	// norm returns nhi, nlo such that
  1334	//	hi * base + lo == nhi * base + nlo
  1335	//	0 <= nlo < base
  1336	func norm(hi, lo, base int) (nhi, nlo int) {
  1337		if lo < 0 {
  1338			n := (-lo-1)/base + 1
  1339			hi -= n
  1340			lo += n * base
  1341		}
  1342		if lo >= base {
  1343			n := lo / base
  1344			hi += n
  1345			lo -= n * base
  1346		}
  1347		return hi, lo
  1348	}
  1349	
  1350	// Date returns the Time corresponding to
  1351	//	yyyy-mm-dd hh:mm:ss + nsec nanoseconds
  1352	// in the appropriate zone for that time in the given location.
  1353	//
  1354	// The month, day, hour, min, sec, and nsec values may be outside
  1355	// their usual ranges and will be normalized during the conversion.
  1356	// For example, October 32 converts to November 1.
  1357	//
  1358	// A daylight savings time transition skips or repeats times.
  1359	// For example, in the United States, March 13, 2011 2:15am never occurred,
  1360	// while November 6, 2011 1:15am occurred twice. In such cases, the
  1361	// choice of time zone, and therefore the time, is not well-defined.
  1362	// Date returns a time that is correct in one of the two zones involved
  1363	// in the transition, but it does not guarantee which.
  1364	//
  1365	// Date panics if loc is nil.
  1366	func Date(year int, month Month, day, hour, min, sec, nsec int, loc *Location) Time {
  1367		if loc == nil {
  1368			panic("time: missing Location in call to Date")
  1369		}
  1370	
  1371		// Normalize month, overflowing into year.
  1372		m := int(month) - 1
  1373		year, m = norm(year, m, 12)
  1374		month = Month(m) + 1
  1375	
  1376		// Normalize nsec, sec, min, hour, overflowing into day.
  1377		sec, nsec = norm(sec, nsec, 1e9)
  1378		min, sec = norm(min, sec, 60)
  1379		hour, min = norm(hour, min, 60)
  1380		day, hour = norm(day, hour, 24)
  1381	
  1382		y := uint64(int64(year) - absoluteZeroYear)
  1383	
  1384		// Compute days since the absolute epoch.
  1385	
  1386		// Add in days from 400-year cycles.
  1387		n := y / 400
  1388		y -= 400 * n
  1389		d := daysPer400Years * n
  1390	
  1391		// Add in 100-year cycles.
  1392		n = y / 100
  1393		y -= 100 * n
  1394		d += daysPer100Years * n
  1395	
  1396		// Add in 4-year cycles.
  1397		n = y / 4
  1398		y -= 4 * n
  1399		d += daysPer4Years * n
  1400	
  1401		// Add in non-leap years.
  1402		n = y
  1403		d += 365 * n
  1404	
  1405		// Add in days before this month.
  1406		d += uint64(daysBefore[month-1])
  1407		if isLeap(year) && month >= March {
  1408			d++ // February 29
  1409		}
  1410	
  1411		// Add in days before today.
  1412		d += uint64(day - 1)
  1413	
  1414		// Add in time elapsed today.
  1415		abs := d * secondsPerDay
  1416		abs += uint64(hour*secondsPerHour + min*secondsPerMinute + sec)
  1417	
  1418		unix := int64(abs) + (absoluteToInternal + internalToUnix)
  1419	
  1420		// Look for zone offset for t, so we can adjust to UTC.
  1421		// The lookup function expects UTC, so we pass t in the
  1422		// hope that it will not be too close to a zone transition,
  1423		// and then adjust if it is.
  1424		_, offset, start, end := loc.lookup(unix)
  1425		if offset != 0 {
  1426			switch utc := unix - int64(offset); {
  1427			case utc < start:
  1428				_, offset, _, _ = loc.lookup(start - 1)
  1429			case utc >= end:
  1430				_, offset, _, _ = loc.lookup(end)
  1431			}
  1432			unix -= int64(offset)
  1433		}
  1434	
  1435		t := unixTime(unix, int32(nsec))
  1436		t.setLoc(loc)
  1437		return t
  1438	}
  1439	
  1440	// Truncate returns the result of rounding t down to a multiple of d (since the zero time).
  1441	// If d <= 0, Truncate returns t stripped of any monotonic clock reading but otherwise unchanged.
  1442	//
  1443	// Truncate operates on the time as an absolute duration since the
  1444	// zero time; it does not operate on the presentation form of the
  1445	// time. Thus, Truncate(Hour) may return a time with a non-zero
  1446	// minute, depending on the time's Location.
  1447	func (t Time) Truncate(d Duration) Time {
  1448		t.stripMono()
  1449		if d <= 0 {
  1450			return t
  1451		}
  1452		_, r := div(t, d)
  1453		return t.Add(-r)
  1454	}
  1455	
  1456	// Round returns the result of rounding t to the nearest multiple of d (since the zero time).
  1457	// The rounding behavior for halfway values is to round up.
  1458	// If d <= 0, Round returns t stripped of any monotonic clock reading but otherwise unchanged.
  1459	//
  1460	// Round operates on the time as an absolute duration since the
  1461	// zero time; it does not operate on the presentation form of the
  1462	// time. Thus, Round(Hour) may return a time with a non-zero
  1463	// minute, depending on the time's Location.
  1464	func (t Time) Round(d Duration) Time {
  1465		t.stripMono()
  1466		if d <= 0 {
  1467			return t
  1468		}
  1469		_, r := div(t, d)
  1470		if lessThanHalf(r, d) {
  1471			return t.Add(-r)
  1472		}
  1473		return t.Add(d - r)
  1474	}
  1475	
  1476	// div divides t by d and returns the quotient parity and remainder.
  1477	// We don't use the quotient parity anymore (round half up instead of round to even)
  1478	// but it's still here in case we change our minds.
  1479	func div(t Time, d Duration) (qmod2 int, r Duration) {
  1480		neg := false
  1481		nsec := t.nsec()
  1482		sec := t.sec()
  1483		if sec < 0 {
  1484			// Operate on absolute value.
  1485			neg = true
  1486			sec = -sec
  1487			nsec = -nsec
  1488			if nsec < 0 {
  1489				nsec += 1e9
  1490				sec-- // sec >= 1 before the -- so safe
  1491			}
  1492		}
  1493	
  1494		switch {
  1495		// Special case: 2d divides 1 second.
  1496		case d < Second && Second%(d+d) == 0:
  1497			qmod2 = int(nsec/int32(d)) & 1
  1498			r = Duration(nsec % int32(d))
  1499	
  1500		// Special case: d is a multiple of 1 second.
  1501		case d%Second == 0:
  1502			d1 := int64(d / Second)
  1503			qmod2 = int(sec/d1) & 1
  1504			r = Duration(sec%d1)*Second + Duration(nsec)
  1505	
  1506		// General case.
  1507		// This could be faster if more cleverness were applied,
  1508		// but it's really only here to avoid special case restrictions in the API.
  1509		// No one will care about these cases.
  1510		default:
  1511			// Compute nanoseconds as 128-bit number.
  1512			sec := uint64(sec)
  1513			tmp := (sec >> 32) * 1e9
  1514			u1 := tmp >> 32
  1515			u0 := tmp << 32
  1516			tmp = (sec & 0xFFFFFFFF) * 1e9
  1517			u0x, u0 := u0, u0+tmp
  1518			if u0 < u0x {
  1519				u1++
  1520			}
  1521			u0x, u0 = u0, u0+uint64(nsec)
  1522			if u0 < u0x {
  1523				u1++
  1524			}
  1525	
  1526			// Compute remainder by subtracting r<<k for decreasing k.
  1527			// Quotient parity is whether we subtract on last round.
  1528			d1 := uint64(d)
  1529			for d1>>63 != 1 {
  1530				d1 <<= 1
  1531			}
  1532			d0 := uint64(0)
  1533			for {
  1534				qmod2 = 0
  1535				if u1 > d1 || u1 == d1 && u0 >= d0 {
  1536					// subtract
  1537					qmod2 = 1
  1538					u0x, u0 = u0, u0-d0
  1539					if u0 > u0x {
  1540						u1--
  1541					}
  1542					u1 -= d1
  1543				}
  1544				if d1 == 0 && d0 == uint64(d) {
  1545					break
  1546				}
  1547				d0 >>= 1
  1548				d0 |= (d1 & 1) << 63
  1549				d1 >>= 1
  1550			}
  1551			r = Duration(u0)
  1552		}
  1553	
  1554		if neg && r != 0 {
  1555			// If input was negative and not an exact multiple of d, we computed q, r such that
  1556			//	q*d + r = -t
  1557			// But the right answers are given by -(q-1), d-r:
  1558			//	q*d + r = -t
  1559			//	-q*d - r = t
  1560			//	-(q-1)*d + (d - r) = t
  1561			qmod2 ^= 1
  1562			r = d - r
  1563		}
  1564		return
  1565	}
  1566	

View as plain text