...

Source file src/pkg/text/template/funcs.go

     1	// Copyright 2011 The Go Authors. All rights reserved.
     2	// Use of this source code is governed by a BSD-style
     3	// license that can be found in the LICENSE file.
     4	
     5	package template
     6	
     7	import (
     8		"bytes"
     9		"errors"
    10		"fmt"
    11		"io"
    12		"net/url"
    13		"reflect"
    14		"strings"
    15		"unicode"
    16		"unicode/utf8"
    17	)
    18	
    19	// FuncMap is the type of the map defining the mapping from names to functions.
    20	// Each function must have either a single return value, or two return values of
    21	// which the second has type error. In that case, if the second (error)
    22	// return value evaluates to non-nil during execution, execution terminates and
    23	// Execute returns that error.
    24	//
    25	// When template execution invokes a function with an argument list, that list
    26	// must be assignable to the function's parameter types. Functions meant to
    27	// apply to arguments of arbitrary type can use parameters of type interface{} or
    28	// of type reflect.Value. Similarly, functions meant to return a result of arbitrary
    29	// type can return interface{} or reflect.Value.
    30	type FuncMap map[string]interface{}
    31	
    32	var builtins = FuncMap{
    33		"and":      and,
    34		"call":     call,
    35		"html":     HTMLEscaper,
    36		"index":    index,
    37		"slice":    slice,
    38		"js":       JSEscaper,
    39		"len":      length,
    40		"not":      not,
    41		"or":       or,
    42		"print":    fmt.Sprint,
    43		"printf":   fmt.Sprintf,
    44		"println":  fmt.Sprintln,
    45		"urlquery": URLQueryEscaper,
    46	
    47		// Comparisons
    48		"eq": eq, // ==
    49		"ge": ge, // >=
    50		"gt": gt, // >
    51		"le": le, // <=
    52		"lt": lt, // <
    53		"ne": ne, // !=
    54	}
    55	
    56	var builtinFuncs = createValueFuncs(builtins)
    57	
    58	// createValueFuncs turns a FuncMap into a map[string]reflect.Value
    59	func createValueFuncs(funcMap FuncMap) map[string]reflect.Value {
    60		m := make(map[string]reflect.Value)
    61		addValueFuncs(m, funcMap)
    62		return m
    63	}
    64	
    65	// addValueFuncs adds to values the functions in funcs, converting them to reflect.Values.
    66	func addValueFuncs(out map[string]reflect.Value, in FuncMap) {
    67		for name, fn := range in {
    68			if !goodName(name) {
    69				panic(fmt.Errorf("function name %q is not a valid identifier", name))
    70			}
    71			v := reflect.ValueOf(fn)
    72			if v.Kind() != reflect.Func {
    73				panic("value for " + name + " not a function")
    74			}
    75			if !goodFunc(v.Type()) {
    76				panic(fmt.Errorf("can't install method/function %q with %d results", name, v.Type().NumOut()))
    77			}
    78			out[name] = v
    79		}
    80	}
    81	
    82	// addFuncs adds to values the functions in funcs. It does no checking of the input -
    83	// call addValueFuncs first.
    84	func addFuncs(out, in FuncMap) {
    85		for name, fn := range in {
    86			out[name] = fn
    87		}
    88	}
    89	
    90	// goodFunc reports whether the function or method has the right result signature.
    91	func goodFunc(typ reflect.Type) bool {
    92		// We allow functions with 1 result or 2 results where the second is an error.
    93		switch {
    94		case typ.NumOut() == 1:
    95			return true
    96		case typ.NumOut() == 2 && typ.Out(1) == errorType:
    97			return true
    98		}
    99		return false
   100	}
   101	
   102	// goodName reports whether the function name is a valid identifier.
   103	func goodName(name string) bool {
   104		if name == "" {
   105			return false
   106		}
   107		for i, r := range name {
   108			switch {
   109			case r == '_':
   110			case i == 0 && !unicode.IsLetter(r):
   111				return false
   112			case !unicode.IsLetter(r) && !unicode.IsDigit(r):
   113				return false
   114			}
   115		}
   116		return true
   117	}
   118	
   119	// findFunction looks for a function in the template, and global map.
   120	func findFunction(name string, tmpl *Template) (reflect.Value, bool) {
   121		if tmpl != nil && tmpl.common != nil {
   122			tmpl.muFuncs.RLock()
   123			defer tmpl.muFuncs.RUnlock()
   124			if fn := tmpl.execFuncs[name]; fn.IsValid() {
   125				return fn, true
   126			}
   127		}
   128		if fn := builtinFuncs[name]; fn.IsValid() {
   129			return fn, true
   130		}
   131		return reflect.Value{}, false
   132	}
   133	
   134	// prepareArg checks if value can be used as an argument of type argType, and
   135	// converts an invalid value to appropriate zero if possible.
   136	func prepareArg(value reflect.Value, argType reflect.Type) (reflect.Value, error) {
   137		if !value.IsValid() {
   138			if !canBeNil(argType) {
   139				return reflect.Value{}, fmt.Errorf("value is nil; should be of type %s", argType)
   140			}
   141			value = reflect.Zero(argType)
   142		}
   143		if value.Type().AssignableTo(argType) {
   144			return value, nil
   145		}
   146		if intLike(value.Kind()) && intLike(argType.Kind()) && value.Type().ConvertibleTo(argType) {
   147			value = value.Convert(argType)
   148			return value, nil
   149		}
   150		return reflect.Value{}, fmt.Errorf("value has type %s; should be %s", value.Type(), argType)
   151	}
   152	
   153	func intLike(typ reflect.Kind) bool {
   154		switch typ {
   155		case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   156			return true
   157		case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   158			return true
   159		}
   160		return false
   161	}
   162	
   163	// indexArg checks if a reflect.Value can be used as an index, and converts it to int if possible.
   164	func indexArg(index reflect.Value, cap int) (int, error) {
   165		var x int64
   166		switch index.Kind() {
   167		case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   168			x = index.Int()
   169		case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   170			x = int64(index.Uint())
   171		case reflect.Invalid:
   172			return 0, fmt.Errorf("cannot index slice/array with nil")
   173		default:
   174			return 0, fmt.Errorf("cannot index slice/array with type %s", index.Type())
   175		}
   176		if x < 0 || int(x) < 0 || int(x) > cap {
   177			return 0, fmt.Errorf("index out of range: %d", x)
   178		}
   179		return int(x), nil
   180	}
   181	
   182	// Indexing.
   183	
   184	// index returns the result of indexing its first argument by the following
   185	// arguments. Thus "index x 1 2 3" is, in Go syntax, x[1][2][3]. Each
   186	// indexed item must be a map, slice, or array.
   187	func index(item reflect.Value, indexes ...reflect.Value) (reflect.Value, error) {
   188		v := indirectInterface(item)
   189		if !v.IsValid() {
   190			return reflect.Value{}, fmt.Errorf("index of untyped nil")
   191		}
   192		for _, i := range indexes {
   193			index := indirectInterface(i)
   194			var isNil bool
   195			if v, isNil = indirect(v); isNil {
   196				return reflect.Value{}, fmt.Errorf("index of nil pointer")
   197			}
   198			switch v.Kind() {
   199			case reflect.Array, reflect.Slice, reflect.String:
   200				x, err := indexArg(index, v.Len())
   201				if err != nil {
   202					return reflect.Value{}, err
   203				}
   204				v = v.Index(x)
   205			case reflect.Map:
   206				index, err := prepareArg(index, v.Type().Key())
   207				if err != nil {
   208					return reflect.Value{}, err
   209				}
   210				if x := v.MapIndex(index); x.IsValid() {
   211					v = x
   212				} else {
   213					v = reflect.Zero(v.Type().Elem())
   214				}
   215			case reflect.Invalid:
   216				// the loop holds invariant: v.IsValid()
   217				panic("unreachable")
   218			default:
   219				return reflect.Value{}, fmt.Errorf("can't index item of type %s", v.Type())
   220			}
   221		}
   222		return v, nil
   223	}
   224	
   225	// Slicing.
   226	
   227	// slice returns the result of slicing its first argument by the remaining
   228	// arguments. Thus "slice x 1 2" is, in Go syntax, x[1:2], while "slice x"
   229	// is x[:], "slice x 1" is x[1:], and "slice x 1 2 3" is x[1:2:3]. The first
   230	// argument must be a string, slice, or array.
   231	func slice(item reflect.Value, indexes ...reflect.Value) (reflect.Value, error) {
   232		var (
   233			cap int
   234			v   = indirectInterface(item)
   235		)
   236		if !v.IsValid() {
   237			return reflect.Value{}, fmt.Errorf("slice of untyped nil")
   238		}
   239		if len(indexes) > 3 {
   240			return reflect.Value{}, fmt.Errorf("too many slice indexes: %d", len(indexes))
   241		}
   242		switch v.Kind() {
   243		case reflect.String:
   244			if len(indexes) == 3 {
   245				return reflect.Value{}, fmt.Errorf("cannot 3-index slice a string")
   246			}
   247			cap = v.Len()
   248		case reflect.Array, reflect.Slice:
   249			cap = v.Cap()
   250		default:
   251			return reflect.Value{}, fmt.Errorf("can't slice item of type %s", v.Type())
   252		}
   253		// set default values for cases item[:], item[i:].
   254		idx := [3]int{0, v.Len()}
   255		for i, index := range indexes {
   256			x, err := indexArg(index, cap)
   257			if err != nil {
   258				return reflect.Value{}, err
   259			}
   260			idx[i] = x
   261		}
   262		// given item[i:j], make sure i <= j.
   263		if idx[0] > idx[1] {
   264			return reflect.Value{}, fmt.Errorf("invalid slice index: %d > %d", idx[0], idx[1])
   265		}
   266		if len(indexes) < 3 {
   267			return item.Slice(idx[0], idx[1]), nil
   268		}
   269		// given item[i:j:k], make sure i <= j <= k.
   270		if idx[1] > idx[2] {
   271			return reflect.Value{}, fmt.Errorf("invalid slice index: %d > %d", idx[1], idx[2])
   272		}
   273		return item.Slice3(idx[0], idx[1], idx[2]), nil
   274	}
   275	
   276	// Length
   277	
   278	// length returns the length of the item, with an error if it has no defined length.
   279	func length(item interface{}) (int, error) {
   280		v := reflect.ValueOf(item)
   281		if !v.IsValid() {
   282			return 0, fmt.Errorf("len of untyped nil")
   283		}
   284		v, isNil := indirect(v)
   285		if isNil {
   286			return 0, fmt.Errorf("len of nil pointer")
   287		}
   288		switch v.Kind() {
   289		case reflect.Array, reflect.Chan, reflect.Map, reflect.Slice, reflect.String:
   290			return v.Len(), nil
   291		}
   292		return 0, fmt.Errorf("len of type %s", v.Type())
   293	}
   294	
   295	// Function invocation
   296	
   297	// call returns the result of evaluating the first argument as a function.
   298	// The function must return 1 result, or 2 results, the second of which is an error.
   299	func call(fn reflect.Value, args ...reflect.Value) (reflect.Value, error) {
   300		v := indirectInterface(fn)
   301		if !v.IsValid() {
   302			return reflect.Value{}, fmt.Errorf("call of nil")
   303		}
   304		typ := v.Type()
   305		if typ.Kind() != reflect.Func {
   306			return reflect.Value{}, fmt.Errorf("non-function of type %s", typ)
   307		}
   308		if !goodFunc(typ) {
   309			return reflect.Value{}, fmt.Errorf("function called with %d args; should be 1 or 2", typ.NumOut())
   310		}
   311		numIn := typ.NumIn()
   312		var dddType reflect.Type
   313		if typ.IsVariadic() {
   314			if len(args) < numIn-1 {
   315				return reflect.Value{}, fmt.Errorf("wrong number of args: got %d want at least %d", len(args), numIn-1)
   316			}
   317			dddType = typ.In(numIn - 1).Elem()
   318		} else {
   319			if len(args) != numIn {
   320				return reflect.Value{}, fmt.Errorf("wrong number of args: got %d want %d", len(args), numIn)
   321			}
   322		}
   323		argv := make([]reflect.Value, len(args))
   324		for i, arg := range args {
   325			value := indirectInterface(arg)
   326			// Compute the expected type. Clumsy because of variadics.
   327			argType := dddType
   328			if !typ.IsVariadic() || i < numIn-1 {
   329				argType = typ.In(i)
   330			}
   331	
   332			var err error
   333			if argv[i], err = prepareArg(value, argType); err != nil {
   334				return reflect.Value{}, fmt.Errorf("arg %d: %s", i, err)
   335			}
   336		}
   337		return safeCall(v, argv)
   338	}
   339	
   340	// safeCall runs fun.Call(args), and returns the resulting value and error, if
   341	// any. If the call panics, the panic value is returned as an error.
   342	func safeCall(fun reflect.Value, args []reflect.Value) (val reflect.Value, err error) {
   343		defer func() {
   344			if r := recover(); r != nil {
   345				if e, ok := r.(error); ok {
   346					err = e
   347				} else {
   348					err = fmt.Errorf("%v", r)
   349				}
   350			}
   351		}()
   352		ret := fun.Call(args)
   353		if len(ret) == 2 && !ret[1].IsNil() {
   354			return ret[0], ret[1].Interface().(error)
   355		}
   356		return ret[0], nil
   357	}
   358	
   359	// Boolean logic.
   360	
   361	func truth(arg reflect.Value) bool {
   362		t, _ := isTrue(indirectInterface(arg))
   363		return t
   364	}
   365	
   366	// and computes the Boolean AND of its arguments, returning
   367	// the first false argument it encounters, or the last argument.
   368	func and(arg0 reflect.Value, args ...reflect.Value) reflect.Value {
   369		if !truth(arg0) {
   370			return arg0
   371		}
   372		for i := range args {
   373			arg0 = args[i]
   374			if !truth(arg0) {
   375				break
   376			}
   377		}
   378		return arg0
   379	}
   380	
   381	// or computes the Boolean OR of its arguments, returning
   382	// the first true argument it encounters, or the last argument.
   383	func or(arg0 reflect.Value, args ...reflect.Value) reflect.Value {
   384		if truth(arg0) {
   385			return arg0
   386		}
   387		for i := range args {
   388			arg0 = args[i]
   389			if truth(arg0) {
   390				break
   391			}
   392		}
   393		return arg0
   394	}
   395	
   396	// not returns the Boolean negation of its argument.
   397	func not(arg reflect.Value) bool {
   398		return !truth(arg)
   399	}
   400	
   401	// Comparison.
   402	
   403	// TODO: Perhaps allow comparison between signed and unsigned integers.
   404	
   405	var (
   406		errBadComparisonType = errors.New("invalid type for comparison")
   407		errBadComparison     = errors.New("incompatible types for comparison")
   408		errNoComparison      = errors.New("missing argument for comparison")
   409	)
   410	
   411	type kind int
   412	
   413	const (
   414		invalidKind kind = iota
   415		boolKind
   416		complexKind
   417		intKind
   418		floatKind
   419		stringKind
   420		uintKind
   421	)
   422	
   423	func basicKind(v reflect.Value) (kind, error) {
   424		switch v.Kind() {
   425		case reflect.Bool:
   426			return boolKind, nil
   427		case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   428			return intKind, nil
   429		case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   430			return uintKind, nil
   431		case reflect.Float32, reflect.Float64:
   432			return floatKind, nil
   433		case reflect.Complex64, reflect.Complex128:
   434			return complexKind, nil
   435		case reflect.String:
   436			return stringKind, nil
   437		}
   438		return invalidKind, errBadComparisonType
   439	}
   440	
   441	// eq evaluates the comparison a == b || a == c || ...
   442	func eq(arg1 reflect.Value, arg2 ...reflect.Value) (bool, error) {
   443		v1 := indirectInterface(arg1)
   444		k1, err := basicKind(v1)
   445		if err != nil {
   446			return false, err
   447		}
   448		if len(arg2) == 0 {
   449			return false, errNoComparison
   450		}
   451		for _, arg := range arg2 {
   452			v2 := indirectInterface(arg)
   453			k2, err := basicKind(v2)
   454			if err != nil {
   455				return false, err
   456			}
   457			truth := false
   458			if k1 != k2 {
   459				// Special case: Can compare integer values regardless of type's sign.
   460				switch {
   461				case k1 == intKind && k2 == uintKind:
   462					truth = v1.Int() >= 0 && uint64(v1.Int()) == v2.Uint()
   463				case k1 == uintKind && k2 == intKind:
   464					truth = v2.Int() >= 0 && v1.Uint() == uint64(v2.Int())
   465				default:
   466					return false, errBadComparison
   467				}
   468			} else {
   469				switch k1 {
   470				case boolKind:
   471					truth = v1.Bool() == v2.Bool()
   472				case complexKind:
   473					truth = v1.Complex() == v2.Complex()
   474				case floatKind:
   475					truth = v1.Float() == v2.Float()
   476				case intKind:
   477					truth = v1.Int() == v2.Int()
   478				case stringKind:
   479					truth = v1.String() == v2.String()
   480				case uintKind:
   481					truth = v1.Uint() == v2.Uint()
   482				default:
   483					panic("invalid kind")
   484				}
   485			}
   486			if truth {
   487				return true, nil
   488			}
   489		}
   490		return false, nil
   491	}
   492	
   493	// ne evaluates the comparison a != b.
   494	func ne(arg1, arg2 reflect.Value) (bool, error) {
   495		// != is the inverse of ==.
   496		equal, err := eq(arg1, arg2)
   497		return !equal, err
   498	}
   499	
   500	// lt evaluates the comparison a < b.
   501	func lt(arg1, arg2 reflect.Value) (bool, error) {
   502		v1 := indirectInterface(arg1)
   503		k1, err := basicKind(v1)
   504		if err != nil {
   505			return false, err
   506		}
   507		v2 := indirectInterface(arg2)
   508		k2, err := basicKind(v2)
   509		if err != nil {
   510			return false, err
   511		}
   512		truth := false
   513		if k1 != k2 {
   514			// Special case: Can compare integer values regardless of type's sign.
   515			switch {
   516			case k1 == intKind && k2 == uintKind:
   517				truth = v1.Int() < 0 || uint64(v1.Int()) < v2.Uint()
   518			case k1 == uintKind && k2 == intKind:
   519				truth = v2.Int() >= 0 && v1.Uint() < uint64(v2.Int())
   520			default:
   521				return false, errBadComparison
   522			}
   523		} else {
   524			switch k1 {
   525			case boolKind, complexKind:
   526				return false, errBadComparisonType
   527			case floatKind:
   528				truth = v1.Float() < v2.Float()
   529			case intKind:
   530				truth = v1.Int() < v2.Int()
   531			case stringKind:
   532				truth = v1.String() < v2.String()
   533			case uintKind:
   534				truth = v1.Uint() < v2.Uint()
   535			default:
   536				panic("invalid kind")
   537			}
   538		}
   539		return truth, nil
   540	}
   541	
   542	// le evaluates the comparison <= b.
   543	func le(arg1, arg2 reflect.Value) (bool, error) {
   544		// <= is < or ==.
   545		lessThan, err := lt(arg1, arg2)
   546		if lessThan || err != nil {
   547			return lessThan, err
   548		}
   549		return eq(arg1, arg2)
   550	}
   551	
   552	// gt evaluates the comparison a > b.
   553	func gt(arg1, arg2 reflect.Value) (bool, error) {
   554		// > is the inverse of <=.
   555		lessOrEqual, err := le(arg1, arg2)
   556		if err != nil {
   557			return false, err
   558		}
   559		return !lessOrEqual, nil
   560	}
   561	
   562	// ge evaluates the comparison a >= b.
   563	func ge(arg1, arg2 reflect.Value) (bool, error) {
   564		// >= is the inverse of <.
   565		lessThan, err := lt(arg1, arg2)
   566		if err != nil {
   567			return false, err
   568		}
   569		return !lessThan, nil
   570	}
   571	
   572	// HTML escaping.
   573	
   574	var (
   575		htmlQuot = []byte("&#34;") // shorter than "&quot;"
   576		htmlApos = []byte("&#39;") // shorter than "&apos;" and apos was not in HTML until HTML5
   577		htmlAmp  = []byte("&amp;")
   578		htmlLt   = []byte("&lt;")
   579		htmlGt   = []byte("&gt;")
   580		htmlNull = []byte("\uFFFD")
   581	)
   582	
   583	// HTMLEscape writes to w the escaped HTML equivalent of the plain text data b.
   584	func HTMLEscape(w io.Writer, b []byte) {
   585		last := 0
   586		for i, c := range b {
   587			var html []byte
   588			switch c {
   589			case '\000':
   590				html = htmlNull
   591			case '"':
   592				html = htmlQuot
   593			case '\'':
   594				html = htmlApos
   595			case '&':
   596				html = htmlAmp
   597			case '<':
   598				html = htmlLt
   599			case '>':
   600				html = htmlGt
   601			default:
   602				continue
   603			}
   604			w.Write(b[last:i])
   605			w.Write(html)
   606			last = i + 1
   607		}
   608		w.Write(b[last:])
   609	}
   610	
   611	// HTMLEscapeString returns the escaped HTML equivalent of the plain text data s.
   612	func HTMLEscapeString(s string) string {
   613		// Avoid allocation if we can.
   614		if !strings.ContainsAny(s, "'\"&<>\000") {
   615			return s
   616		}
   617		var b bytes.Buffer
   618		HTMLEscape(&b, []byte(s))
   619		return b.String()
   620	}
   621	
   622	// HTMLEscaper returns the escaped HTML equivalent of the textual
   623	// representation of its arguments.
   624	func HTMLEscaper(args ...interface{}) string {
   625		return HTMLEscapeString(evalArgs(args))
   626	}
   627	
   628	// JavaScript escaping.
   629	
   630	var (
   631		jsLowUni = []byte(`\u00`)
   632		hex      = []byte("0123456789ABCDEF")
   633	
   634		jsBackslash = []byte(`\\`)
   635		jsApos      = []byte(`\'`)
   636		jsQuot      = []byte(`\"`)
   637		jsLt        = []byte(`\x3C`)
   638		jsGt        = []byte(`\x3E`)
   639	)
   640	
   641	// JSEscape writes to w the escaped JavaScript equivalent of the plain text data b.
   642	func JSEscape(w io.Writer, b []byte) {
   643		last := 0
   644		for i := 0; i < len(b); i++ {
   645			c := b[i]
   646	
   647			if !jsIsSpecial(rune(c)) {
   648				// fast path: nothing to do
   649				continue
   650			}
   651			w.Write(b[last:i])
   652	
   653			if c < utf8.RuneSelf {
   654				// Quotes, slashes and angle brackets get quoted.
   655				// Control characters get written as \u00XX.
   656				switch c {
   657				case '\\':
   658					w.Write(jsBackslash)
   659				case '\'':
   660					w.Write(jsApos)
   661				case '"':
   662					w.Write(jsQuot)
   663				case '<':
   664					w.Write(jsLt)
   665				case '>':
   666					w.Write(jsGt)
   667				default:
   668					w.Write(jsLowUni)
   669					t, b := c>>4, c&0x0f
   670					w.Write(hex[t : t+1])
   671					w.Write(hex[b : b+1])
   672				}
   673			} else {
   674				// Unicode rune.
   675				r, size := utf8.DecodeRune(b[i:])
   676				if unicode.IsPrint(r) {
   677					w.Write(b[i : i+size])
   678				} else {
   679					fmt.Fprintf(w, "\\u%04X", r)
   680				}
   681				i += size - 1
   682			}
   683			last = i + 1
   684		}
   685		w.Write(b[last:])
   686	}
   687	
   688	// JSEscapeString returns the escaped JavaScript equivalent of the plain text data s.
   689	func JSEscapeString(s string) string {
   690		// Avoid allocation if we can.
   691		if strings.IndexFunc(s, jsIsSpecial) < 0 {
   692			return s
   693		}
   694		var b bytes.Buffer
   695		JSEscape(&b, []byte(s))
   696		return b.String()
   697	}
   698	
   699	func jsIsSpecial(r rune) bool {
   700		switch r {
   701		case '\\', '\'', '"', '<', '>':
   702			return true
   703		}
   704		return r < ' ' || utf8.RuneSelf <= r
   705	}
   706	
   707	// JSEscaper returns the escaped JavaScript equivalent of the textual
   708	// representation of its arguments.
   709	func JSEscaper(args ...interface{}) string {
   710		return JSEscapeString(evalArgs(args))
   711	}
   712	
   713	// URLQueryEscaper returns the escaped value of the textual representation of
   714	// its arguments in a form suitable for embedding in a URL query.
   715	func URLQueryEscaper(args ...interface{}) string {
   716		return url.QueryEscape(evalArgs(args))
   717	}
   718	
   719	// evalArgs formats the list of arguments into a string. It is therefore equivalent to
   720	//	fmt.Sprint(args...)
   721	// except that each argument is indirected (if a pointer), as required,
   722	// using the same rules as the default string evaluation during template
   723	// execution.
   724	func evalArgs(args []interface{}) string {
   725		ok := false
   726		var s string
   727		// Fast path for simple common case.
   728		if len(args) == 1 {
   729			s, ok = args[0].(string)
   730		}
   731		if !ok {
   732			for i, arg := range args {
   733				a, ok := printableValue(reflect.ValueOf(arg))
   734				if ok {
   735					args[i] = a
   736				} // else let fmt do its thing
   737			}
   738			s = fmt.Sprint(args...)
   739		}
   740		return s
   741	}
   742	

View as plain text