...

Source file src/pkg/text/template/exec.go

     1	// Copyright 2011 The Go Authors. All rights reserved.
     2	// Use of this source code is governed by a BSD-style
     3	// license that can be found in the LICENSE file.
     4	
     5	package template
     6	
     7	import (
     8		"bytes"
     9		"fmt"
    10		"internal/fmtsort"
    11		"io"
    12		"reflect"
    13		"runtime"
    14		"strings"
    15		"text/template/parse"
    16	)
    17	
    18	// maxExecDepth specifies the maximum stack depth of templates within
    19	// templates. This limit is only practically reached by accidentally
    20	// recursive template invocations. This limit allows us to return
    21	// an error instead of triggering a stack overflow.
    22	var maxExecDepth = initMaxExecDepth()
    23	
    24	func initMaxExecDepth() int {
    25		if runtime.GOARCH == "wasm" {
    26			return 1000
    27		}
    28		return 100000
    29	}
    30	
    31	// state represents the state of an execution. It's not part of the
    32	// template so that multiple executions of the same template
    33	// can execute in parallel.
    34	type state struct {
    35		tmpl  *Template
    36		wr    io.Writer
    37		node  parse.Node // current node, for errors
    38		vars  []variable // push-down stack of variable values.
    39		depth int        // the height of the stack of executing templates.
    40	}
    41	
    42	// variable holds the dynamic value of a variable such as $, $x etc.
    43	type variable struct {
    44		name  string
    45		value reflect.Value
    46	}
    47	
    48	// push pushes a new variable on the stack.
    49	func (s *state) push(name string, value reflect.Value) {
    50		s.vars = append(s.vars, variable{name, value})
    51	}
    52	
    53	// mark returns the length of the variable stack.
    54	func (s *state) mark() int {
    55		return len(s.vars)
    56	}
    57	
    58	// pop pops the variable stack up to the mark.
    59	func (s *state) pop(mark int) {
    60		s.vars = s.vars[0:mark]
    61	}
    62	
    63	// setVar overwrites the last declared variable with the given name.
    64	// Used by variable assignments.
    65	func (s *state) setVar(name string, value reflect.Value) {
    66		for i := s.mark() - 1; i >= 0; i-- {
    67			if s.vars[i].name == name {
    68				s.vars[i].value = value
    69				return
    70			}
    71		}
    72		s.errorf("undefined variable: %s", name)
    73	}
    74	
    75	// setTopVar overwrites the top-nth variable on the stack. Used by range iterations.
    76	func (s *state) setTopVar(n int, value reflect.Value) {
    77		s.vars[len(s.vars)-n].value = value
    78	}
    79	
    80	// varValue returns the value of the named variable.
    81	func (s *state) varValue(name string) reflect.Value {
    82		for i := s.mark() - 1; i >= 0; i-- {
    83			if s.vars[i].name == name {
    84				return s.vars[i].value
    85			}
    86		}
    87		s.errorf("undefined variable: %s", name)
    88		return zero
    89	}
    90	
    91	var zero reflect.Value
    92	
    93	type missingValType struct{}
    94	
    95	var missingVal = reflect.ValueOf(missingValType{})
    96	
    97	// at marks the state to be on node n, for error reporting.
    98	func (s *state) at(node parse.Node) {
    99		s.node = node
   100	}
   101	
   102	// doublePercent returns the string with %'s replaced by %%, if necessary,
   103	// so it can be used safely inside a Printf format string.
   104	func doublePercent(str string) string {
   105		return strings.ReplaceAll(str, "%", "%%")
   106	}
   107	
   108	// TODO: It would be nice if ExecError was more broken down, but
   109	// the way ErrorContext embeds the template name makes the
   110	// processing too clumsy.
   111	
   112	// ExecError is the custom error type returned when Execute has an
   113	// error evaluating its template. (If a write error occurs, the actual
   114	// error is returned; it will not be of type ExecError.)
   115	type ExecError struct {
   116		Name string // Name of template.
   117		Err  error  // Pre-formatted error.
   118	}
   119	
   120	func (e ExecError) Error() string {
   121		return e.Err.Error()
   122	}
   123	
   124	func (e ExecError) Unwrap() error {
   125		return e.Err
   126	}
   127	
   128	// errorf records an ExecError and terminates processing.
   129	func (s *state) errorf(format string, args ...interface{}) {
   130		name := doublePercent(s.tmpl.Name())
   131		if s.node == nil {
   132			format = fmt.Sprintf("template: %s: %s", name, format)
   133		} else {
   134			location, context := s.tmpl.ErrorContext(s.node)
   135			format = fmt.Sprintf("template: %s: executing %q at <%s>: %s", location, name, doublePercent(context), format)
   136		}
   137		panic(ExecError{
   138			Name: s.tmpl.Name(),
   139			Err:  fmt.Errorf(format, args...),
   140		})
   141	}
   142	
   143	// writeError is the wrapper type used internally when Execute has an
   144	// error writing to its output. We strip the wrapper in errRecover.
   145	// Note that this is not an implementation of error, so it cannot escape
   146	// from the package as an error value.
   147	type writeError struct {
   148		Err error // Original error.
   149	}
   150	
   151	func (s *state) writeError(err error) {
   152		panic(writeError{
   153			Err: err,
   154		})
   155	}
   156	
   157	// errRecover is the handler that turns panics into returns from the top
   158	// level of Parse.
   159	func errRecover(errp *error) {
   160		e := recover()
   161		if e != nil {
   162			switch err := e.(type) {
   163			case runtime.Error:
   164				panic(e)
   165			case writeError:
   166				*errp = err.Err // Strip the wrapper.
   167			case ExecError:
   168				*errp = err // Keep the wrapper.
   169			default:
   170				panic(e)
   171			}
   172		}
   173	}
   174	
   175	// ExecuteTemplate applies the template associated with t that has the given name
   176	// to the specified data object and writes the output to wr.
   177	// If an error occurs executing the template or writing its output,
   178	// execution stops, but partial results may already have been written to
   179	// the output writer.
   180	// A template may be executed safely in parallel, although if parallel
   181	// executions share a Writer the output may be interleaved.
   182	func (t *Template) ExecuteTemplate(wr io.Writer, name string, data interface{}) error {
   183		var tmpl *Template
   184		if t.common != nil {
   185			tmpl = t.tmpl[name]
   186		}
   187		if tmpl == nil {
   188			return fmt.Errorf("template: no template %q associated with template %q", name, t.name)
   189		}
   190		return tmpl.Execute(wr, data)
   191	}
   192	
   193	// Execute applies a parsed template to the specified data object,
   194	// and writes the output to wr.
   195	// If an error occurs executing the template or writing its output,
   196	// execution stops, but partial results may already have been written to
   197	// the output writer.
   198	// A template may be executed safely in parallel, although if parallel
   199	// executions share a Writer the output may be interleaved.
   200	//
   201	// If data is a reflect.Value, the template applies to the concrete
   202	// value that the reflect.Value holds, as in fmt.Print.
   203	func (t *Template) Execute(wr io.Writer, data interface{}) error {
   204		return t.execute(wr, data)
   205	}
   206	
   207	func (t *Template) execute(wr io.Writer, data interface{}) (err error) {
   208		defer errRecover(&err)
   209		value, ok := data.(reflect.Value)
   210		if !ok {
   211			value = reflect.ValueOf(data)
   212		}
   213		state := &state{
   214			tmpl: t,
   215			wr:   wr,
   216			vars: []variable{{"$", value}},
   217		}
   218		if t.Tree == nil || t.Root == nil {
   219			state.errorf("%q is an incomplete or empty template", t.Name())
   220		}
   221		state.walk(value, t.Root)
   222		return
   223	}
   224	
   225	// DefinedTemplates returns a string listing the defined templates,
   226	// prefixed by the string "; defined templates are: ". If there are none,
   227	// it returns the empty string. For generating an error message here
   228	// and in html/template.
   229	func (t *Template) DefinedTemplates() string {
   230		if t.common == nil {
   231			return ""
   232		}
   233		var b bytes.Buffer
   234		for name, tmpl := range t.tmpl {
   235			if tmpl.Tree == nil || tmpl.Root == nil {
   236				continue
   237			}
   238			if b.Len() > 0 {
   239				b.WriteString(", ")
   240			}
   241			fmt.Fprintf(&b, "%q", name)
   242		}
   243		var s string
   244		if b.Len() > 0 {
   245			s = "; defined templates are: " + b.String()
   246		}
   247		return s
   248	}
   249	
   250	// Walk functions step through the major pieces of the template structure,
   251	// generating output as they go.
   252	func (s *state) walk(dot reflect.Value, node parse.Node) {
   253		s.at(node)
   254		switch node := node.(type) {
   255		case *parse.ActionNode:
   256			// Do not pop variables so they persist until next end.
   257			// Also, if the action declares variables, don't print the result.
   258			val := s.evalPipeline(dot, node.Pipe)
   259			if len(node.Pipe.Decl) == 0 {
   260				s.printValue(node, val)
   261			}
   262		case *parse.IfNode:
   263			s.walkIfOrWith(parse.NodeIf, dot, node.Pipe, node.List, node.ElseList)
   264		case *parse.ListNode:
   265			for _, node := range node.Nodes {
   266				s.walk(dot, node)
   267			}
   268		case *parse.RangeNode:
   269			s.walkRange(dot, node)
   270		case *parse.TemplateNode:
   271			s.walkTemplate(dot, node)
   272		case *parse.TextNode:
   273			if _, err := s.wr.Write(node.Text); err != nil {
   274				s.writeError(err)
   275			}
   276		case *parse.WithNode:
   277			s.walkIfOrWith(parse.NodeWith, dot, node.Pipe, node.List, node.ElseList)
   278		default:
   279			s.errorf("unknown node: %s", node)
   280		}
   281	}
   282	
   283	// walkIfOrWith walks an 'if' or 'with' node. The two control structures
   284	// are identical in behavior except that 'with' sets dot.
   285	func (s *state) walkIfOrWith(typ parse.NodeType, dot reflect.Value, pipe *parse.PipeNode, list, elseList *parse.ListNode) {
   286		defer s.pop(s.mark())
   287		val := s.evalPipeline(dot, pipe)
   288		truth, ok := isTrue(indirectInterface(val))
   289		if !ok {
   290			s.errorf("if/with can't use %v", val)
   291		}
   292		if truth {
   293			if typ == parse.NodeWith {
   294				s.walk(val, list)
   295			} else {
   296				s.walk(dot, list)
   297			}
   298		} else if elseList != nil {
   299			s.walk(dot, elseList)
   300		}
   301	}
   302	
   303	// IsTrue reports whether the value is 'true', in the sense of not the zero of its type,
   304	// and whether the value has a meaningful truth value. This is the definition of
   305	// truth used by if and other such actions.
   306	func IsTrue(val interface{}) (truth, ok bool) {
   307		return isTrue(reflect.ValueOf(val))
   308	}
   309	
   310	func isTrue(val reflect.Value) (truth, ok bool) {
   311		if !val.IsValid() {
   312			// Something like var x interface{}, never set. It's a form of nil.
   313			return false, true
   314		}
   315		switch val.Kind() {
   316		case reflect.Array, reflect.Map, reflect.Slice, reflect.String:
   317			truth = val.Len() > 0
   318		case reflect.Bool:
   319			truth = val.Bool()
   320		case reflect.Complex64, reflect.Complex128:
   321			truth = val.Complex() != 0
   322		case reflect.Chan, reflect.Func, reflect.Ptr, reflect.Interface:
   323			truth = !val.IsNil()
   324		case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   325			truth = val.Int() != 0
   326		case reflect.Float32, reflect.Float64:
   327			truth = val.Float() != 0
   328		case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   329			truth = val.Uint() != 0
   330		case reflect.Struct:
   331			truth = true // Struct values are always true.
   332		default:
   333			return
   334		}
   335		return truth, true
   336	}
   337	
   338	func (s *state) walkRange(dot reflect.Value, r *parse.RangeNode) {
   339		s.at(r)
   340		defer s.pop(s.mark())
   341		val, _ := indirect(s.evalPipeline(dot, r.Pipe))
   342		// mark top of stack before any variables in the body are pushed.
   343		mark := s.mark()
   344		oneIteration := func(index, elem reflect.Value) {
   345			// Set top var (lexically the second if there are two) to the element.
   346			if len(r.Pipe.Decl) > 0 {
   347				s.setTopVar(1, elem)
   348			}
   349			// Set next var (lexically the first if there are two) to the index.
   350			if len(r.Pipe.Decl) > 1 {
   351				s.setTopVar(2, index)
   352			}
   353			s.walk(elem, r.List)
   354			s.pop(mark)
   355		}
   356		switch val.Kind() {
   357		case reflect.Array, reflect.Slice:
   358			if val.Len() == 0 {
   359				break
   360			}
   361			for i := 0; i < val.Len(); i++ {
   362				oneIteration(reflect.ValueOf(i), val.Index(i))
   363			}
   364			return
   365		case reflect.Map:
   366			if val.Len() == 0 {
   367				break
   368			}
   369			om := fmtsort.Sort(val)
   370			for i, key := range om.Key {
   371				oneIteration(key, om.Value[i])
   372			}
   373			return
   374		case reflect.Chan:
   375			if val.IsNil() {
   376				break
   377			}
   378			i := 0
   379			for ; ; i++ {
   380				elem, ok := val.Recv()
   381				if !ok {
   382					break
   383				}
   384				oneIteration(reflect.ValueOf(i), elem)
   385			}
   386			if i == 0 {
   387				break
   388			}
   389			return
   390		case reflect.Invalid:
   391			break // An invalid value is likely a nil map, etc. and acts like an empty map.
   392		default:
   393			s.errorf("range can't iterate over %v", val)
   394		}
   395		if r.ElseList != nil {
   396			s.walk(dot, r.ElseList)
   397		}
   398	}
   399	
   400	func (s *state) walkTemplate(dot reflect.Value, t *parse.TemplateNode) {
   401		s.at(t)
   402		tmpl := s.tmpl.tmpl[t.Name]
   403		if tmpl == nil {
   404			s.errorf("template %q not defined", t.Name)
   405		}
   406		if s.depth == maxExecDepth {
   407			s.errorf("exceeded maximum template depth (%v)", maxExecDepth)
   408		}
   409		// Variables declared by the pipeline persist.
   410		dot = s.evalPipeline(dot, t.Pipe)
   411		newState := *s
   412		newState.depth++
   413		newState.tmpl = tmpl
   414		// No dynamic scoping: template invocations inherit no variables.
   415		newState.vars = []variable{{"$", dot}}
   416		newState.walk(dot, tmpl.Root)
   417	}
   418	
   419	// Eval functions evaluate pipelines, commands, and their elements and extract
   420	// values from the data structure by examining fields, calling methods, and so on.
   421	// The printing of those values happens only through walk functions.
   422	
   423	// evalPipeline returns the value acquired by evaluating a pipeline. If the
   424	// pipeline has a variable declaration, the variable will be pushed on the
   425	// stack. Callers should therefore pop the stack after they are finished
   426	// executing commands depending on the pipeline value.
   427	func (s *state) evalPipeline(dot reflect.Value, pipe *parse.PipeNode) (value reflect.Value) {
   428		if pipe == nil {
   429			return
   430		}
   431		s.at(pipe)
   432		value = missingVal
   433		for _, cmd := range pipe.Cmds {
   434			value = s.evalCommand(dot, cmd, value) // previous value is this one's final arg.
   435			// If the object has type interface{}, dig down one level to the thing inside.
   436			if value.Kind() == reflect.Interface && value.Type().NumMethod() == 0 {
   437				value = reflect.ValueOf(value.Interface()) // lovely!
   438			}
   439		}
   440		for _, variable := range pipe.Decl {
   441			if pipe.IsAssign {
   442				s.setVar(variable.Ident[0], value)
   443			} else {
   444				s.push(variable.Ident[0], value)
   445			}
   446		}
   447		return value
   448	}
   449	
   450	func (s *state) notAFunction(args []parse.Node, final reflect.Value) {
   451		if len(args) > 1 || final != missingVal {
   452			s.errorf("can't give argument to non-function %s", args[0])
   453		}
   454	}
   455	
   456	func (s *state) evalCommand(dot reflect.Value, cmd *parse.CommandNode, final reflect.Value) reflect.Value {
   457		firstWord := cmd.Args[0]
   458		switch n := firstWord.(type) {
   459		case *parse.FieldNode:
   460			return s.evalFieldNode(dot, n, cmd.Args, final)
   461		case *parse.ChainNode:
   462			return s.evalChainNode(dot, n, cmd.Args, final)
   463		case *parse.IdentifierNode:
   464			// Must be a function.
   465			return s.evalFunction(dot, n, cmd, cmd.Args, final)
   466		case *parse.PipeNode:
   467			// Parenthesized pipeline. The arguments are all inside the pipeline; final is ignored.
   468			return s.evalPipeline(dot, n)
   469		case *parse.VariableNode:
   470			return s.evalVariableNode(dot, n, cmd.Args, final)
   471		}
   472		s.at(firstWord)
   473		s.notAFunction(cmd.Args, final)
   474		switch word := firstWord.(type) {
   475		case *parse.BoolNode:
   476			return reflect.ValueOf(word.True)
   477		case *parse.DotNode:
   478			return dot
   479		case *parse.NilNode:
   480			s.errorf("nil is not a command")
   481		case *parse.NumberNode:
   482			return s.idealConstant(word)
   483		case *parse.StringNode:
   484			return reflect.ValueOf(word.Text)
   485		}
   486		s.errorf("can't evaluate command %q", firstWord)
   487		panic("not reached")
   488	}
   489	
   490	// idealConstant is called to return the value of a number in a context where
   491	// we don't know the type. In that case, the syntax of the number tells us
   492	// its type, and we use Go rules to resolve. Note there is no such thing as
   493	// a uint ideal constant in this situation - the value must be of int type.
   494	func (s *state) idealConstant(constant *parse.NumberNode) reflect.Value {
   495		// These are ideal constants but we don't know the type
   496		// and we have no context.  (If it was a method argument,
   497		// we'd know what we need.) The syntax guides us to some extent.
   498		s.at(constant)
   499		switch {
   500		case constant.IsComplex:
   501			return reflect.ValueOf(constant.Complex128) // incontrovertible.
   502		case constant.IsFloat && !isHexInt(constant.Text) && strings.ContainsAny(constant.Text, ".eEpP"):
   503			return reflect.ValueOf(constant.Float64)
   504		case constant.IsInt:
   505			n := int(constant.Int64)
   506			if int64(n) != constant.Int64 {
   507				s.errorf("%s overflows int", constant.Text)
   508			}
   509			return reflect.ValueOf(n)
   510		case constant.IsUint:
   511			s.errorf("%s overflows int", constant.Text)
   512		}
   513		return zero
   514	}
   515	
   516	func isHexInt(s string) bool {
   517		return len(s) > 2 && s[0] == '0' && (s[1] == 'x' || s[1] == 'X') && !strings.ContainsAny(s, "pP")
   518	}
   519	
   520	func (s *state) evalFieldNode(dot reflect.Value, field *parse.FieldNode, args []parse.Node, final reflect.Value) reflect.Value {
   521		s.at(field)
   522		return s.evalFieldChain(dot, dot, field, field.Ident, args, final)
   523	}
   524	
   525	func (s *state) evalChainNode(dot reflect.Value, chain *parse.ChainNode, args []parse.Node, final reflect.Value) reflect.Value {
   526		s.at(chain)
   527		if len(chain.Field) == 0 {
   528			s.errorf("internal error: no fields in evalChainNode")
   529		}
   530		if chain.Node.Type() == parse.NodeNil {
   531			s.errorf("indirection through explicit nil in %s", chain)
   532		}
   533		// (pipe).Field1.Field2 has pipe as .Node, fields as .Field. Eval the pipeline, then the fields.
   534		pipe := s.evalArg(dot, nil, chain.Node)
   535		return s.evalFieldChain(dot, pipe, chain, chain.Field, args, final)
   536	}
   537	
   538	func (s *state) evalVariableNode(dot reflect.Value, variable *parse.VariableNode, args []parse.Node, final reflect.Value) reflect.Value {
   539		// $x.Field has $x as the first ident, Field as the second. Eval the var, then the fields.
   540		s.at(variable)
   541		value := s.varValue(variable.Ident[0])
   542		if len(variable.Ident) == 1 {
   543			s.notAFunction(args, final)
   544			return value
   545		}
   546		return s.evalFieldChain(dot, value, variable, variable.Ident[1:], args, final)
   547	}
   548	
   549	// evalFieldChain evaluates .X.Y.Z possibly followed by arguments.
   550	// dot is the environment in which to evaluate arguments, while
   551	// receiver is the value being walked along the chain.
   552	func (s *state) evalFieldChain(dot, receiver reflect.Value, node parse.Node, ident []string, args []parse.Node, final reflect.Value) reflect.Value {
   553		n := len(ident)
   554		for i := 0; i < n-1; i++ {
   555			receiver = s.evalField(dot, ident[i], node, nil, missingVal, receiver)
   556		}
   557		// Now if it's a method, it gets the arguments.
   558		return s.evalField(dot, ident[n-1], node, args, final, receiver)
   559	}
   560	
   561	func (s *state) evalFunction(dot reflect.Value, node *parse.IdentifierNode, cmd parse.Node, args []parse.Node, final reflect.Value) reflect.Value {
   562		s.at(node)
   563		name := node.Ident
   564		function, ok := findFunction(name, s.tmpl)
   565		if !ok {
   566			s.errorf("%q is not a defined function", name)
   567		}
   568		return s.evalCall(dot, function, cmd, name, args, final)
   569	}
   570	
   571	// evalField evaluates an expression like (.Field) or (.Field arg1 arg2).
   572	// The 'final' argument represents the return value from the preceding
   573	// value of the pipeline, if any.
   574	func (s *state) evalField(dot reflect.Value, fieldName string, node parse.Node, args []parse.Node, final, receiver reflect.Value) reflect.Value {
   575		if !receiver.IsValid() {
   576			if s.tmpl.option.missingKey == mapError { // Treat invalid value as missing map key.
   577				s.errorf("nil data; no entry for key %q", fieldName)
   578			}
   579			return zero
   580		}
   581		typ := receiver.Type()
   582		receiver, isNil := indirect(receiver)
   583		if receiver.Kind() == reflect.Interface && isNil {
   584			// Calling a method on a nil interface can't work. The
   585			// MethodByName method call below would panic.
   586			s.errorf("nil pointer evaluating %s.%s", typ, fieldName)
   587			return zero
   588		}
   589	
   590		// Unless it's an interface, need to get to a value of type *T to guarantee
   591		// we see all methods of T and *T.
   592		ptr := receiver
   593		if ptr.Kind() != reflect.Interface && ptr.Kind() != reflect.Ptr && ptr.CanAddr() {
   594			ptr = ptr.Addr()
   595		}
   596		if method := ptr.MethodByName(fieldName); method.IsValid() {
   597			return s.evalCall(dot, method, node, fieldName, args, final)
   598		}
   599		hasArgs := len(args) > 1 || final != missingVal
   600		// It's not a method; must be a field of a struct or an element of a map.
   601		switch receiver.Kind() {
   602		case reflect.Struct:
   603			tField, ok := receiver.Type().FieldByName(fieldName)
   604			if ok {
   605				field := receiver.FieldByIndex(tField.Index)
   606				if tField.PkgPath != "" { // field is unexported
   607					s.errorf("%s is an unexported field of struct type %s", fieldName, typ)
   608				}
   609				// If it's a function, we must call it.
   610				if hasArgs {
   611					s.errorf("%s has arguments but cannot be invoked as function", fieldName)
   612				}
   613				return field
   614			}
   615		case reflect.Map:
   616			// If it's a map, attempt to use the field name as a key.
   617			nameVal := reflect.ValueOf(fieldName)
   618			if nameVal.Type().AssignableTo(receiver.Type().Key()) {
   619				if hasArgs {
   620					s.errorf("%s is not a method but has arguments", fieldName)
   621				}
   622				result := receiver.MapIndex(nameVal)
   623				if !result.IsValid() {
   624					switch s.tmpl.option.missingKey {
   625					case mapInvalid:
   626						// Just use the invalid value.
   627					case mapZeroValue:
   628						result = reflect.Zero(receiver.Type().Elem())
   629					case mapError:
   630						s.errorf("map has no entry for key %q", fieldName)
   631					}
   632				}
   633				return result
   634			}
   635		case reflect.Ptr:
   636			etyp := receiver.Type().Elem()
   637			if etyp.Kind() == reflect.Struct {
   638				if _, ok := etyp.FieldByName(fieldName); !ok {
   639					// If there's no such field, say "can't evaluate"
   640					// instead of "nil pointer evaluating".
   641					break
   642				}
   643			}
   644			if isNil {
   645				s.errorf("nil pointer evaluating %s.%s", typ, fieldName)
   646			}
   647		}
   648		s.errorf("can't evaluate field %s in type %s", fieldName, typ)
   649		panic("not reached")
   650	}
   651	
   652	var (
   653		errorType        = reflect.TypeOf((*error)(nil)).Elem()
   654		fmtStringerType  = reflect.TypeOf((*fmt.Stringer)(nil)).Elem()
   655		reflectValueType = reflect.TypeOf((*reflect.Value)(nil)).Elem()
   656	)
   657	
   658	// evalCall executes a function or method call. If it's a method, fun already has the receiver bound, so
   659	// it looks just like a function call. The arg list, if non-nil, includes (in the manner of the shell), arg[0]
   660	// as the function itself.
   661	func (s *state) evalCall(dot, fun reflect.Value, node parse.Node, name string, args []parse.Node, final reflect.Value) reflect.Value {
   662		if args != nil {
   663			args = args[1:] // Zeroth arg is function name/node; not passed to function.
   664		}
   665		typ := fun.Type()
   666		numIn := len(args)
   667		if final != missingVal {
   668			numIn++
   669		}
   670		numFixed := len(args)
   671		if typ.IsVariadic() {
   672			numFixed = typ.NumIn() - 1 // last arg is the variadic one.
   673			if numIn < numFixed {
   674				s.errorf("wrong number of args for %s: want at least %d got %d", name, typ.NumIn()-1, len(args))
   675			}
   676		} else if numIn != typ.NumIn() {
   677			s.errorf("wrong number of args for %s: want %d got %d", name, typ.NumIn(), numIn)
   678		}
   679		if !goodFunc(typ) {
   680			// TODO: This could still be a confusing error; maybe goodFunc should provide info.
   681			s.errorf("can't call method/function %q with %d results", name, typ.NumOut())
   682		}
   683		// Build the arg list.
   684		argv := make([]reflect.Value, numIn)
   685		// Args must be evaluated. Fixed args first.
   686		i := 0
   687		for ; i < numFixed && i < len(args); i++ {
   688			argv[i] = s.evalArg(dot, typ.In(i), args[i])
   689		}
   690		// Now the ... args.
   691		if typ.IsVariadic() {
   692			argType := typ.In(typ.NumIn() - 1).Elem() // Argument is a slice.
   693			for ; i < len(args); i++ {
   694				argv[i] = s.evalArg(dot, argType, args[i])
   695			}
   696		}
   697		// Add final value if necessary.
   698		if final != missingVal {
   699			t := typ.In(typ.NumIn() - 1)
   700			if typ.IsVariadic() {
   701				if numIn-1 < numFixed {
   702					// The added final argument corresponds to a fixed parameter of the function.
   703					// Validate against the type of the actual parameter.
   704					t = typ.In(numIn - 1)
   705				} else {
   706					// The added final argument corresponds to the variadic part.
   707					// Validate against the type of the elements of the variadic slice.
   708					t = t.Elem()
   709				}
   710			}
   711			argv[i] = s.validateType(final, t)
   712		}
   713		v, err := safeCall(fun, argv)
   714		// If we have an error that is not nil, stop execution and return that
   715		// error to the caller.
   716		if err != nil {
   717			s.at(node)
   718			s.errorf("error calling %s: %v", name, err)
   719		}
   720		if v.Type() == reflectValueType {
   721			v = v.Interface().(reflect.Value)
   722		}
   723		return v
   724	}
   725	
   726	// canBeNil reports whether an untyped nil can be assigned to the type. See reflect.Zero.
   727	func canBeNil(typ reflect.Type) bool {
   728		switch typ.Kind() {
   729		case reflect.Chan, reflect.Func, reflect.Interface, reflect.Map, reflect.Ptr, reflect.Slice:
   730			return true
   731		case reflect.Struct:
   732			return typ == reflectValueType
   733		}
   734		return false
   735	}
   736	
   737	// validateType guarantees that the value is valid and assignable to the type.
   738	func (s *state) validateType(value reflect.Value, typ reflect.Type) reflect.Value {
   739		if !value.IsValid() {
   740			if typ == nil {
   741				// An untyped nil interface{}. Accept as a proper nil value.
   742				return reflect.ValueOf(nil)
   743			}
   744			if canBeNil(typ) {
   745				// Like above, but use the zero value of the non-nil type.
   746				return reflect.Zero(typ)
   747			}
   748			s.errorf("invalid value; expected %s", typ)
   749		}
   750		if typ == reflectValueType && value.Type() != typ {
   751			return reflect.ValueOf(value)
   752		}
   753		if typ != nil && !value.Type().AssignableTo(typ) {
   754			if value.Kind() == reflect.Interface && !value.IsNil() {
   755				value = value.Elem()
   756				if value.Type().AssignableTo(typ) {
   757					return value
   758				}
   759				// fallthrough
   760			}
   761			// Does one dereference or indirection work? We could do more, as we
   762			// do with method receivers, but that gets messy and method receivers
   763			// are much more constrained, so it makes more sense there than here.
   764			// Besides, one is almost always all you need.
   765			switch {
   766			case value.Kind() == reflect.Ptr && value.Type().Elem().AssignableTo(typ):
   767				value = value.Elem()
   768				if !value.IsValid() {
   769					s.errorf("dereference of nil pointer of type %s", typ)
   770				}
   771			case reflect.PtrTo(value.Type()).AssignableTo(typ) && value.CanAddr():
   772				value = value.Addr()
   773			default:
   774				s.errorf("wrong type for value; expected %s; got %s", typ, value.Type())
   775			}
   776		}
   777		return value
   778	}
   779	
   780	func (s *state) evalArg(dot reflect.Value, typ reflect.Type, n parse.Node) reflect.Value {
   781		s.at(n)
   782		switch arg := n.(type) {
   783		case *parse.DotNode:
   784			return s.validateType(dot, typ)
   785		case *parse.NilNode:
   786			if canBeNil(typ) {
   787				return reflect.Zero(typ)
   788			}
   789			s.errorf("cannot assign nil to %s", typ)
   790		case *parse.FieldNode:
   791			return s.validateType(s.evalFieldNode(dot, arg, []parse.Node{n}, missingVal), typ)
   792		case *parse.VariableNode:
   793			return s.validateType(s.evalVariableNode(dot, arg, nil, missingVal), typ)
   794		case *parse.PipeNode:
   795			return s.validateType(s.evalPipeline(dot, arg), typ)
   796		case *parse.IdentifierNode:
   797			return s.validateType(s.evalFunction(dot, arg, arg, nil, missingVal), typ)
   798		case *parse.ChainNode:
   799			return s.validateType(s.evalChainNode(dot, arg, nil, missingVal), typ)
   800		}
   801		switch typ.Kind() {
   802		case reflect.Bool:
   803			return s.evalBool(typ, n)
   804		case reflect.Complex64, reflect.Complex128:
   805			return s.evalComplex(typ, n)
   806		case reflect.Float32, reflect.Float64:
   807			return s.evalFloat(typ, n)
   808		case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   809			return s.evalInteger(typ, n)
   810		case reflect.Interface:
   811			if typ.NumMethod() == 0 {
   812				return s.evalEmptyInterface(dot, n)
   813			}
   814		case reflect.Struct:
   815			if typ == reflectValueType {
   816				return reflect.ValueOf(s.evalEmptyInterface(dot, n))
   817			}
   818		case reflect.String:
   819			return s.evalString(typ, n)
   820		case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   821			return s.evalUnsignedInteger(typ, n)
   822		}
   823		s.errorf("can't handle %s for arg of type %s", n, typ)
   824		panic("not reached")
   825	}
   826	
   827	func (s *state) evalBool(typ reflect.Type, n parse.Node) reflect.Value {
   828		s.at(n)
   829		if n, ok := n.(*parse.BoolNode); ok {
   830			value := reflect.New(typ).Elem()
   831			value.SetBool(n.True)
   832			return value
   833		}
   834		s.errorf("expected bool; found %s", n)
   835		panic("not reached")
   836	}
   837	
   838	func (s *state) evalString(typ reflect.Type, n parse.Node) reflect.Value {
   839		s.at(n)
   840		if n, ok := n.(*parse.StringNode); ok {
   841			value := reflect.New(typ).Elem()
   842			value.SetString(n.Text)
   843			return value
   844		}
   845		s.errorf("expected string; found %s", n)
   846		panic("not reached")
   847	}
   848	
   849	func (s *state) evalInteger(typ reflect.Type, n parse.Node) reflect.Value {
   850		s.at(n)
   851		if n, ok := n.(*parse.NumberNode); ok && n.IsInt {
   852			value := reflect.New(typ).Elem()
   853			value.SetInt(n.Int64)
   854			return value
   855		}
   856		s.errorf("expected integer; found %s", n)
   857		panic("not reached")
   858	}
   859	
   860	func (s *state) evalUnsignedInteger(typ reflect.Type, n parse.Node) reflect.Value {
   861		s.at(n)
   862		if n, ok := n.(*parse.NumberNode); ok && n.IsUint {
   863			value := reflect.New(typ).Elem()
   864			value.SetUint(n.Uint64)
   865			return value
   866		}
   867		s.errorf("expected unsigned integer; found %s", n)
   868		panic("not reached")
   869	}
   870	
   871	func (s *state) evalFloat(typ reflect.Type, n parse.Node) reflect.Value {
   872		s.at(n)
   873		if n, ok := n.(*parse.NumberNode); ok && n.IsFloat {
   874			value := reflect.New(typ).Elem()
   875			value.SetFloat(n.Float64)
   876			return value
   877		}
   878		s.errorf("expected float; found %s", n)
   879		panic("not reached")
   880	}
   881	
   882	func (s *state) evalComplex(typ reflect.Type, n parse.Node) reflect.Value {
   883		if n, ok := n.(*parse.NumberNode); ok && n.IsComplex {
   884			value := reflect.New(typ).Elem()
   885			value.SetComplex(n.Complex128)
   886			return value
   887		}
   888		s.errorf("expected complex; found %s", n)
   889		panic("not reached")
   890	}
   891	
   892	func (s *state) evalEmptyInterface(dot reflect.Value, n parse.Node) reflect.Value {
   893		s.at(n)
   894		switch n := n.(type) {
   895		case *parse.BoolNode:
   896			return reflect.ValueOf(n.True)
   897		case *parse.DotNode:
   898			return dot
   899		case *parse.FieldNode:
   900			return s.evalFieldNode(dot, n, nil, missingVal)
   901		case *parse.IdentifierNode:
   902			return s.evalFunction(dot, n, n, nil, missingVal)
   903		case *parse.NilNode:
   904			// NilNode is handled in evalArg, the only place that calls here.
   905			s.errorf("evalEmptyInterface: nil (can't happen)")
   906		case *parse.NumberNode:
   907			return s.idealConstant(n)
   908		case *parse.StringNode:
   909			return reflect.ValueOf(n.Text)
   910		case *parse.VariableNode:
   911			return s.evalVariableNode(dot, n, nil, missingVal)
   912		case *parse.PipeNode:
   913			return s.evalPipeline(dot, n)
   914		}
   915		s.errorf("can't handle assignment of %s to empty interface argument", n)
   916		panic("not reached")
   917	}
   918	
   919	// indirect returns the item at the end of indirection, and a bool to indicate
   920	// if it's nil. If the returned bool is true, the returned value's kind will be
   921	// either a pointer or interface.
   922	func indirect(v reflect.Value) (rv reflect.Value, isNil bool) {
   923		for ; v.Kind() == reflect.Ptr || v.Kind() == reflect.Interface; v = v.Elem() {
   924			if v.IsNil() {
   925				return v, true
   926			}
   927		}
   928		return v, false
   929	}
   930	
   931	// indirectInterface returns the concrete value in an interface value,
   932	// or else the zero reflect.Value.
   933	// That is, if v represents the interface value x, the result is the same as reflect.ValueOf(x):
   934	// the fact that x was an interface value is forgotten.
   935	func indirectInterface(v reflect.Value) reflect.Value {
   936		if v.Kind() != reflect.Interface {
   937			return v
   938		}
   939		if v.IsNil() {
   940			return reflect.Value{}
   941		}
   942		return v.Elem()
   943	}
   944	
   945	// printValue writes the textual representation of the value to the output of
   946	// the template.
   947	func (s *state) printValue(n parse.Node, v reflect.Value) {
   948		s.at(n)
   949		iface, ok := printableValue(v)
   950		if !ok {
   951			s.errorf("can't print %s of type %s", n, v.Type())
   952		}
   953		_, err := fmt.Fprint(s.wr, iface)
   954		if err != nil {
   955			s.writeError(err)
   956		}
   957	}
   958	
   959	// printableValue returns the, possibly indirected, interface value inside v that
   960	// is best for a call to formatted printer.
   961	func printableValue(v reflect.Value) (interface{}, bool) {
   962		if v.Kind() == reflect.Ptr {
   963			v, _ = indirect(v) // fmt.Fprint handles nil.
   964		}
   965		if !v.IsValid() {
   966			return "<no value>", true
   967		}
   968	
   969		if !v.Type().Implements(errorType) && !v.Type().Implements(fmtStringerType) {
   970			if v.CanAddr() && (reflect.PtrTo(v.Type()).Implements(errorType) || reflect.PtrTo(v.Type()).Implements(fmtStringerType)) {
   971				v = v.Addr()
   972			} else {
   973				switch v.Kind() {
   974				case reflect.Chan, reflect.Func:
   975					return nil, false
   976				}
   977			}
   978		}
   979		return v.Interface(), true
   980	}
   981	

View as plain text