...

Text file src/pkg/runtime/asm_arm.s

     1	// Copyright 2009 The Go Authors. All rights reserved.
     2	// Use of this source code is governed by a BSD-style
     3	// license that can be found in the LICENSE file.
     4	
     5	#include "go_asm.h"
     6	#include "go_tls.h"
     7	#include "funcdata.h"
     8	#include "textflag.h"
     9	
    10	// _rt0_arm is common startup code for most ARM systems when using
    11	// internal linking. This is the entry point for the program from the
    12	// kernel for an ordinary -buildmode=exe program. The stack holds the
    13	// number of arguments and the C-style argv.
    14	TEXT _rt0_arm(SB),NOSPLIT|NOFRAME,$0
    15		MOVW	(R13), R0	// argc
    16		MOVW	$4(R13), R1		// argv
    17		B	runtime·rt0_go(SB)
    18	
    19	// main is common startup code for most ARM systems when using
    20	// external linking. The C startup code will call the symbol "main"
    21	// passing argc and argv in the usual C ABI registers R0 and R1.
    22	TEXT main(SB),NOSPLIT|NOFRAME,$0
    23		B	runtime·rt0_go(SB)
    24	
    25	// _rt0_arm_lib is common startup code for most ARM systems when
    26	// using -buildmode=c-archive or -buildmode=c-shared. The linker will
    27	// arrange to invoke this function as a global constructor (for
    28	// c-archive) or when the shared library is loaded (for c-shared).
    29	// We expect argc and argv to be passed in the usual C ABI registers
    30	// R0 and R1.
    31	TEXT _rt0_arm_lib(SB),NOSPLIT,$104
    32		// Preserve callee-save registers. Raspberry Pi's dlopen(), for example,
    33		// actually cares that R11 is preserved.
    34		MOVW	R4, 12(R13)
    35		MOVW	R5, 16(R13)
    36		MOVW	R6, 20(R13)
    37		MOVW	R7, 24(R13)
    38		MOVW	R8, 28(R13)
    39		MOVW	g, 32(R13)
    40		MOVW	R11, 36(R13)
    41	
    42		// Skip floating point registers on GOARM < 6.
    43		MOVB    runtime·goarm(SB), R11
    44		CMP	$6, R11
    45		BLT	skipfpsave
    46		MOVD	F8, (40+8*0)(R13)
    47		MOVD	F9, (40+8*1)(R13)
    48		MOVD	F10, (40+8*2)(R13)
    49		MOVD	F11, (40+8*3)(R13)
    50		MOVD	F12, (40+8*4)(R13)
    51		MOVD	F13, (40+8*5)(R13)
    52		MOVD	F14, (40+8*6)(R13)
    53		MOVD	F15, (40+8*7)(R13)
    54	skipfpsave:
    55		// Save argc/argv.
    56		MOVW	R0, _rt0_arm_lib_argc<>(SB)
    57		MOVW	R1, _rt0_arm_lib_argv<>(SB)
    58	
    59		MOVW	$0, g // Initialize g.
    60	
    61		// Synchronous initialization.
    62		CALL	runtime·libpreinit(SB)
    63	
    64		// Create a new thread to do the runtime initialization.
    65		MOVW	_cgo_sys_thread_create(SB), R2
    66		CMP	$0, R2
    67		BEQ	nocgo
    68		MOVW	$_rt0_arm_lib_go<>(SB), R0
    69		MOVW	$0, R1
    70		BL	(R2)
    71		B	rr
    72	nocgo:
    73		MOVW	$0x800000, R0                     // stacksize = 8192KB
    74		MOVW	$_rt0_arm_lib_go<>(SB), R1  // fn
    75		MOVW	R0, 4(R13)
    76		MOVW	R1, 8(R13)
    77		BL	runtime·newosproc0(SB)
    78	rr:
    79		// Restore callee-save registers and return.
    80		MOVB    runtime·goarm(SB), R11
    81		CMP	$6, R11
    82		BLT	skipfprest
    83		MOVD	(40+8*0)(R13), F8
    84		MOVD	(40+8*1)(R13), F9
    85		MOVD	(40+8*2)(R13), F10
    86		MOVD	(40+8*3)(R13), F11
    87		MOVD	(40+8*4)(R13), F12
    88		MOVD	(40+8*5)(R13), F13
    89		MOVD	(40+8*6)(R13), F14
    90		MOVD	(40+8*7)(R13), F15
    91	skipfprest:
    92		MOVW	12(R13), R4
    93		MOVW	16(R13), R5
    94		MOVW	20(R13), R6
    95		MOVW	24(R13), R7
    96		MOVW	28(R13), R8
    97		MOVW	32(R13), g
    98		MOVW	36(R13), R11
    99		RET
   100	
   101	// _rt0_arm_lib_go initializes the Go runtime.
   102	// This is started in a separate thread by _rt0_arm_lib.
   103	TEXT _rt0_arm_lib_go<>(SB),NOSPLIT,$8
   104		MOVW	_rt0_arm_lib_argc<>(SB), R0
   105		MOVW	_rt0_arm_lib_argv<>(SB), R1
   106		B	runtime·rt0_go(SB)
   107	
   108	DATA _rt0_arm_lib_argc<>(SB)/4,$0
   109	GLOBL _rt0_arm_lib_argc<>(SB),NOPTR,$4
   110	DATA _rt0_arm_lib_argv<>(SB)/4,$0
   111	GLOBL _rt0_arm_lib_argv<>(SB),NOPTR,$4
   112	
   113	// using NOFRAME means do not save LR on stack.
   114	// argc is in R0, argv is in R1.
   115	TEXT runtime·rt0_go(SB),NOSPLIT|NOFRAME,$0
   116		MOVW	$0xcafebabe, R12
   117	
   118		// copy arguments forward on an even stack
   119		// use R13 instead of SP to avoid linker rewriting the offsets
   120		SUB	$64, R13		// plenty of scratch
   121		AND	$~7, R13
   122		MOVW	R0, 60(R13)		// save argc, argv away
   123		MOVW	R1, 64(R13)
   124	
   125		// set up g register
   126		// g is R10
   127		MOVW	$runtime·g0(SB), g
   128		MOVW	$runtime·m0(SB), R8
   129	
   130		// save m->g0 = g0
   131		MOVW	g, m_g0(R8)
   132		// save g->m = m0
   133		MOVW	R8, g_m(g)
   134	
   135		// create istack out of the OS stack
   136		// (1MB of system stack is available on iOS and Android)
   137		MOVW	$(-64*1024+104)(R13), R0
   138		MOVW	R0, g_stackguard0(g)
   139		MOVW	R0, g_stackguard1(g)
   140		MOVW	R0, (g_stack+stack_lo)(g)
   141		MOVW	R13, (g_stack+stack_hi)(g)
   142	
   143		BL	runtime·emptyfunc(SB)	// fault if stack check is wrong
   144	
   145		BL	runtime·_initcgo(SB)	// will clobber R0-R3
   146	
   147		// update stackguard after _cgo_init
   148		MOVW	(g_stack+stack_lo)(g), R0
   149		ADD	$const__StackGuard, R0
   150		MOVW	R0, g_stackguard0(g)
   151		MOVW	R0, g_stackguard1(g)
   152	
   153		BL	runtime·check(SB)
   154	
   155		// saved argc, argv
   156		MOVW	60(R13), R0
   157		MOVW	R0, 4(R13)
   158		MOVW	64(R13), R1
   159		MOVW	R1, 8(R13)
   160		BL	runtime·args(SB)
   161		BL	runtime·checkgoarm(SB)
   162		BL	runtime·osinit(SB)
   163		BL	runtime·schedinit(SB)
   164	
   165		// create a new goroutine to start program
   166		MOVW	$runtime·mainPC(SB), R0
   167		MOVW.W	R0, -4(R13)
   168		MOVW	$8, R0
   169		MOVW.W	R0, -4(R13)
   170		MOVW	$0, R0
   171		MOVW.W	R0, -4(R13)	// push $0 as guard
   172		BL	runtime·newproc(SB)
   173		MOVW	$12(R13), R13	// pop args and LR
   174	
   175		// start this M
   176		BL	runtime·mstart(SB)
   177	
   178		MOVW	$1234, R0
   179		MOVW	$1000, R1
   180		MOVW	R0, (R1)	// fail hard
   181	
   182	DATA	runtime·mainPC+0(SB)/4,$runtime·main(SB)
   183	GLOBL	runtime·mainPC(SB),RODATA,$4
   184	
   185	TEXT runtime·breakpoint(SB),NOSPLIT,$0-0
   186		// gdb won't skip this breakpoint instruction automatically,
   187		// so you must manually "set $pc+=4" to skip it and continue.
   188	#ifdef GOOS_nacl
   189		WORD	$0xe125be7f	// BKPT 0x5bef, NACL_INSTR_ARM_BREAKPOINT
   190	#else
   191	#ifdef GOOS_plan9
   192		WORD	$0xD1200070	// undefined instruction used as armv5 breakpoint in Plan 9
   193	#else
   194		WORD	$0xe7f001f0	// undefined instruction that gdb understands is a software breakpoint
   195	#endif
   196	#endif
   197		RET
   198	
   199	TEXT runtime·asminit(SB),NOSPLIT,$0-0
   200		// disable runfast (flush-to-zero) mode of vfp if runtime.goarm > 5
   201		MOVB	runtime·goarm(SB), R11
   202		CMP	$5, R11
   203		BLE	4(PC)
   204		WORD	$0xeef1ba10	// vmrs r11, fpscr
   205		BIC	$(1<<24), R11
   206		WORD	$0xeee1ba10	// vmsr fpscr, r11
   207		RET
   208	
   209	/*
   210	 *  go-routine
   211	 */
   212	
   213	// void gosave(Gobuf*)
   214	// save state in Gobuf; setjmp
   215	TEXT runtime·gosave(SB),NOSPLIT|NOFRAME,$0-4
   216		MOVW	buf+0(FP), R0
   217		MOVW	R13, gobuf_sp(R0)
   218		MOVW	LR, gobuf_pc(R0)
   219		MOVW	g, gobuf_g(R0)
   220		MOVW	$0, R11
   221		MOVW	R11, gobuf_lr(R0)
   222		MOVW	R11, gobuf_ret(R0)
   223		// Assert ctxt is zero. See func save.
   224		MOVW	gobuf_ctxt(R0), R0
   225		CMP	R0, R11
   226		B.EQ	2(PC)
   227		CALL	runtime·badctxt(SB)
   228		RET
   229	
   230	// void gogo(Gobuf*)
   231	// restore state from Gobuf; longjmp
   232	TEXT runtime·gogo(SB),NOSPLIT,$8-4
   233		MOVW	buf+0(FP), R1
   234		MOVW	gobuf_g(R1), R0
   235		BL	setg<>(SB)
   236	
   237		// NOTE: We updated g above, and we are about to update SP.
   238		// Until LR and PC are also updated, the g/SP/LR/PC quadruple
   239		// are out of sync and must not be used as the basis of a traceback.
   240		// Sigprof skips the traceback when SP is not within g's bounds,
   241		// and when the PC is inside this function, runtime.gogo.
   242		// Since we are about to update SP, until we complete runtime.gogo
   243		// we must not leave this function. In particular, no calls
   244		// after this point: it must be straight-line code until the
   245		// final B instruction.
   246		// See large comment in sigprof for more details.
   247		MOVW	gobuf_sp(R1), R13	// restore SP==R13
   248		MOVW	gobuf_lr(R1), LR
   249		MOVW	gobuf_ret(R1), R0
   250		MOVW	gobuf_ctxt(R1), R7
   251		MOVW	$0, R11
   252		MOVW	R11, gobuf_sp(R1)	// clear to help garbage collector
   253		MOVW	R11, gobuf_ret(R1)
   254		MOVW	R11, gobuf_lr(R1)
   255		MOVW	R11, gobuf_ctxt(R1)
   256		MOVW	gobuf_pc(R1), R11
   257		CMP	R11, R11 // set condition codes for == test, needed by stack split
   258		B	(R11)
   259	
   260	// func mcall(fn func(*g))
   261	// Switch to m->g0's stack, call fn(g).
   262	// Fn must never return. It should gogo(&g->sched)
   263	// to keep running g.
   264	TEXT runtime·mcall(SB),NOSPLIT|NOFRAME,$0-4
   265		// Save caller state in g->sched.
   266		MOVW	R13, (g_sched+gobuf_sp)(g)
   267		MOVW	LR, (g_sched+gobuf_pc)(g)
   268		MOVW	$0, R11
   269		MOVW	R11, (g_sched+gobuf_lr)(g)
   270		MOVW	g, (g_sched+gobuf_g)(g)
   271	
   272		// Switch to m->g0 & its stack, call fn.
   273		MOVW	g, R1
   274		MOVW	g_m(g), R8
   275		MOVW	m_g0(R8), R0
   276		BL	setg<>(SB)
   277		CMP	g, R1
   278		B.NE	2(PC)
   279		B	runtime·badmcall(SB)
   280		MOVB	runtime·iscgo(SB), R11
   281		CMP	$0, R11
   282		BL.NE	runtime·save_g(SB)
   283		MOVW	fn+0(FP), R0
   284		MOVW	(g_sched+gobuf_sp)(g), R13
   285		SUB	$8, R13
   286		MOVW	R1, 4(R13)
   287		MOVW	R0, R7
   288		MOVW	0(R0), R0
   289		BL	(R0)
   290		B	runtime·badmcall2(SB)
   291		RET
   292	
   293	// systemstack_switch is a dummy routine that systemstack leaves at the bottom
   294	// of the G stack. We need to distinguish the routine that
   295	// lives at the bottom of the G stack from the one that lives
   296	// at the top of the system stack because the one at the top of
   297	// the system stack terminates the stack walk (see topofstack()).
   298	TEXT runtime·systemstack_switch(SB),NOSPLIT,$0-0
   299		MOVW	$0, R0
   300		BL	(R0) // clobber lr to ensure push {lr} is kept
   301		RET
   302	
   303	// func systemstack(fn func())
   304	TEXT runtime·systemstack(SB),NOSPLIT,$0-4
   305		MOVW	fn+0(FP), R0	// R0 = fn
   306		MOVW	g_m(g), R1	// R1 = m
   307	
   308		MOVW	m_gsignal(R1), R2	// R2 = gsignal
   309		CMP	g, R2
   310		B.EQ	noswitch
   311	
   312		MOVW	m_g0(R1), R2	// R2 = g0
   313		CMP	g, R2
   314		B.EQ	noswitch
   315	
   316		MOVW	m_curg(R1), R3
   317		CMP	g, R3
   318		B.EQ	switch
   319	
   320		// Bad: g is not gsignal, not g0, not curg. What is it?
   321		// Hide call from linker nosplit analysis.
   322		MOVW	$runtime·badsystemstack(SB), R0
   323		BL	(R0)
   324		B	runtime·abort(SB)
   325	
   326	switch:
   327		// save our state in g->sched. Pretend to
   328		// be systemstack_switch if the G stack is scanned.
   329		MOVW	$runtime·systemstack_switch(SB), R3
   330	#ifdef GOOS_nacl
   331		ADD	$4, R3, R3 // get past nacl-insert bic instruction
   332	#endif
   333		ADD	$4, R3, R3 // get past push {lr}
   334		MOVW	R3, (g_sched+gobuf_pc)(g)
   335		MOVW	R13, (g_sched+gobuf_sp)(g)
   336		MOVW	LR, (g_sched+gobuf_lr)(g)
   337		MOVW	g, (g_sched+gobuf_g)(g)
   338	
   339		// switch to g0
   340		MOVW	R0, R5
   341		MOVW	R2, R0
   342		BL	setg<>(SB)
   343		MOVW	R5, R0
   344		MOVW	(g_sched+gobuf_sp)(R2), R3
   345		// make it look like mstart called systemstack on g0, to stop traceback
   346		SUB	$4, R3, R3
   347		MOVW	$runtime·mstart(SB), R4
   348		MOVW	R4, 0(R3)
   349		MOVW	R3, R13
   350	
   351		// call target function
   352		MOVW	R0, R7
   353		MOVW	0(R0), R0
   354		BL	(R0)
   355	
   356		// switch back to g
   357		MOVW	g_m(g), R1
   358		MOVW	m_curg(R1), R0
   359		BL	setg<>(SB)
   360		MOVW	(g_sched+gobuf_sp)(g), R13
   361		MOVW	$0, R3
   362		MOVW	R3, (g_sched+gobuf_sp)(g)
   363		RET
   364	
   365	noswitch:
   366		// Using a tail call here cleans up tracebacks since we won't stop
   367		// at an intermediate systemstack.
   368		MOVW	R0, R7
   369		MOVW	0(R0), R0
   370		MOVW.P	4(R13), R14	// restore LR
   371		B	(R0)
   372	
   373	/*
   374	 * support for morestack
   375	 */
   376	
   377	// Called during function prolog when more stack is needed.
   378	// R3 prolog's LR
   379	// using NOFRAME means do not save LR on stack.
   380	//
   381	// The traceback routines see morestack on a g0 as being
   382	// the top of a stack (for example, morestack calling newstack
   383	// calling the scheduler calling newm calling gc), so we must
   384	// record an argument size. For that purpose, it has no arguments.
   385	TEXT runtime·morestack(SB),NOSPLIT|NOFRAME,$0-0
   386		// Cannot grow scheduler stack (m->g0).
   387		MOVW	g_m(g), R8
   388		MOVW	m_g0(R8), R4
   389		CMP	g, R4
   390		BNE	3(PC)
   391		BL	runtime·badmorestackg0(SB)
   392		B	runtime·abort(SB)
   393	
   394		// Cannot grow signal stack (m->gsignal).
   395		MOVW	m_gsignal(R8), R4
   396		CMP	g, R4
   397		BNE	3(PC)
   398		BL	runtime·badmorestackgsignal(SB)
   399		B	runtime·abort(SB)
   400	
   401		// Called from f.
   402		// Set g->sched to context in f.
   403		MOVW	R13, (g_sched+gobuf_sp)(g)
   404		MOVW	LR, (g_sched+gobuf_pc)(g)
   405		MOVW	R3, (g_sched+gobuf_lr)(g)
   406		MOVW	R7, (g_sched+gobuf_ctxt)(g)
   407	
   408		// Called from f.
   409		// Set m->morebuf to f's caller.
   410		MOVW	R3, (m_morebuf+gobuf_pc)(R8)	// f's caller's PC
   411		MOVW	R13, (m_morebuf+gobuf_sp)(R8)	// f's caller's SP
   412		MOVW	g, (m_morebuf+gobuf_g)(R8)
   413	
   414		// Call newstack on m->g0's stack.
   415		MOVW	m_g0(R8), R0
   416		BL	setg<>(SB)
   417		MOVW	(g_sched+gobuf_sp)(g), R13
   418		MOVW	$0, R0
   419		MOVW.W  R0, -4(R13)	// create a call frame on g0 (saved LR)
   420		BL	runtime·newstack(SB)
   421	
   422		// Not reached, but make sure the return PC from the call to newstack
   423		// is still in this function, and not the beginning of the next.
   424		RET
   425	
   426	TEXT runtime·morestack_noctxt(SB),NOSPLIT|NOFRAME,$0-0
   427		MOVW	$0, R7
   428		B runtime·morestack(SB)
   429	
   430	// reflectcall: call a function with the given argument list
   431	// func call(argtype *_type, f *FuncVal, arg *byte, argsize, retoffset uint32).
   432	// we don't have variable-sized frames, so we use a small number
   433	// of constant-sized-frame functions to encode a few bits of size in the pc.
   434	// Caution: ugly multiline assembly macros in your future!
   435	
   436	#define DISPATCH(NAME,MAXSIZE)		\
   437		CMP	$MAXSIZE, R0;		\
   438		B.HI	3(PC);			\
   439		MOVW	$NAME(SB), R1;		\
   440		B	(R1)
   441	
   442	TEXT ·reflectcall(SB),NOSPLIT|NOFRAME,$0-20
   443		MOVW	argsize+12(FP), R0
   444		DISPATCH(runtime·call16, 16)
   445		DISPATCH(runtime·call32, 32)
   446		DISPATCH(runtime·call64, 64)
   447		DISPATCH(runtime·call128, 128)
   448		DISPATCH(runtime·call256, 256)
   449		DISPATCH(runtime·call512, 512)
   450		DISPATCH(runtime·call1024, 1024)
   451		DISPATCH(runtime·call2048, 2048)
   452		DISPATCH(runtime·call4096, 4096)
   453		DISPATCH(runtime·call8192, 8192)
   454		DISPATCH(runtime·call16384, 16384)
   455		DISPATCH(runtime·call32768, 32768)
   456		DISPATCH(runtime·call65536, 65536)
   457		DISPATCH(runtime·call131072, 131072)
   458		DISPATCH(runtime·call262144, 262144)
   459		DISPATCH(runtime·call524288, 524288)
   460		DISPATCH(runtime·call1048576, 1048576)
   461		DISPATCH(runtime·call2097152, 2097152)
   462		DISPATCH(runtime·call4194304, 4194304)
   463		DISPATCH(runtime·call8388608, 8388608)
   464		DISPATCH(runtime·call16777216, 16777216)
   465		DISPATCH(runtime·call33554432, 33554432)
   466		DISPATCH(runtime·call67108864, 67108864)
   467		DISPATCH(runtime·call134217728, 134217728)
   468		DISPATCH(runtime·call268435456, 268435456)
   469		DISPATCH(runtime·call536870912, 536870912)
   470		DISPATCH(runtime·call1073741824, 1073741824)
   471		MOVW	$runtime·badreflectcall(SB), R1
   472		B	(R1)
   473	
   474	#define CALLFN(NAME,MAXSIZE)			\
   475	TEXT NAME(SB), WRAPPER, $MAXSIZE-20;		\
   476		NO_LOCAL_POINTERS;			\
   477		/* copy arguments to stack */		\
   478		MOVW	argptr+8(FP), R0;		\
   479		MOVW	argsize+12(FP), R2;		\
   480		ADD	$4, R13, R1;			\
   481		CMP	$0, R2;				\
   482		B.EQ	5(PC);				\
   483		MOVBU.P	1(R0), R5;			\
   484		MOVBU.P R5, 1(R1);			\
   485		SUB	$1, R2, R2;			\
   486		B	-5(PC);				\
   487		/* call function */			\
   488		MOVW	f+4(FP), R7;			\
   489		MOVW	(R7), R0;			\
   490		PCDATA  $PCDATA_StackMapIndex, $0;	\
   491		BL	(R0);				\
   492		/* copy return values back */		\
   493		MOVW	argtype+0(FP), R4;		\
   494		MOVW	argptr+8(FP), R0;		\
   495		MOVW	argsize+12(FP), R2;		\
   496		MOVW	retoffset+16(FP), R3;		\
   497		ADD	$4, R13, R1;			\
   498		ADD	R3, R1;				\
   499		ADD	R3, R0;				\
   500		SUB	R3, R2;				\
   501		BL	callRet<>(SB);			\
   502		RET
   503	
   504	// callRet copies return values back at the end of call*. This is a
   505	// separate function so it can allocate stack space for the arguments
   506	// to reflectcallmove. It does not follow the Go ABI; it expects its
   507	// arguments in registers.
   508	TEXT callRet<>(SB), NOSPLIT, $16-0
   509		MOVW	R4, 4(R13)
   510		MOVW	R0, 8(R13)
   511		MOVW	R1, 12(R13)
   512		MOVW	R2, 16(R13)
   513		BL	runtime·reflectcallmove(SB)
   514		RET
   515	
   516	CALLFN(·call16, 16)
   517	CALLFN(·call32, 32)
   518	CALLFN(·call64, 64)
   519	CALLFN(·call128, 128)
   520	CALLFN(·call256, 256)
   521	CALLFN(·call512, 512)
   522	CALLFN(·call1024, 1024)
   523	CALLFN(·call2048, 2048)
   524	CALLFN(·call4096, 4096)
   525	CALLFN(·call8192, 8192)
   526	CALLFN(·call16384, 16384)
   527	CALLFN(·call32768, 32768)
   528	CALLFN(·call65536, 65536)
   529	CALLFN(·call131072, 131072)
   530	CALLFN(·call262144, 262144)
   531	CALLFN(·call524288, 524288)
   532	CALLFN(·call1048576, 1048576)
   533	CALLFN(·call2097152, 2097152)
   534	CALLFN(·call4194304, 4194304)
   535	CALLFN(·call8388608, 8388608)
   536	CALLFN(·call16777216, 16777216)
   537	CALLFN(·call33554432, 33554432)
   538	CALLFN(·call67108864, 67108864)
   539	CALLFN(·call134217728, 134217728)
   540	CALLFN(·call268435456, 268435456)
   541	CALLFN(·call536870912, 536870912)
   542	CALLFN(·call1073741824, 1073741824)
   543	
   544	// void jmpdefer(fn, sp);
   545	// called from deferreturn.
   546	// 1. grab stored LR for caller
   547	// 2. sub 4 bytes to get back to BL deferreturn
   548	// 3. B to fn
   549	// TODO(rsc): Push things on stack and then use pop
   550	// to load all registers simultaneously, so that a profiling
   551	// interrupt can never see mismatched SP/LR/PC.
   552	// (And double-check that pop is atomic in that way.)
   553	TEXT runtime·jmpdefer(SB),NOSPLIT,$0-8
   554		MOVW	0(R13), LR
   555		MOVW	$-4(LR), LR	// BL deferreturn
   556		MOVW	fv+0(FP), R7
   557		MOVW	argp+4(FP), R13
   558		MOVW	$-4(R13), R13	// SP is 4 below argp, due to saved LR
   559		MOVW	0(R7), R1
   560		B	(R1)
   561	
   562	// Save state of caller into g->sched. Smashes R11.
   563	TEXT gosave<>(SB),NOSPLIT|NOFRAME,$0
   564		MOVW	LR, (g_sched+gobuf_pc)(g)
   565		MOVW	R13, (g_sched+gobuf_sp)(g)
   566		MOVW	$0, R11
   567		MOVW	R11, (g_sched+gobuf_lr)(g)
   568		MOVW	R11, (g_sched+gobuf_ret)(g)
   569		MOVW	R11, (g_sched+gobuf_ctxt)(g)
   570		// Assert ctxt is zero. See func save.
   571		MOVW	(g_sched+gobuf_ctxt)(g), R11
   572		CMP	$0, R11
   573		B.EQ	2(PC)
   574		CALL	runtime·badctxt(SB)
   575		RET
   576	
   577	// func asmcgocall(fn, arg unsafe.Pointer) int32
   578	// Call fn(arg) on the scheduler stack,
   579	// aligned appropriately for the gcc ABI.
   580	// See cgocall.go for more details.
   581	TEXT ·asmcgocall(SB),NOSPLIT,$0-12
   582		MOVW	fn+0(FP), R1
   583		MOVW	arg+4(FP), R0
   584	
   585		MOVW	R13, R2
   586		CMP	$0, g
   587		BEQ nosave
   588		MOVW	g, R4
   589	
   590		// Figure out if we need to switch to m->g0 stack.
   591		// We get called to create new OS threads too, and those
   592		// come in on the m->g0 stack already.
   593		MOVW	g_m(g), R8
   594		MOVW	m_gsignal(R8), R3
   595		CMP	R3, g
   596		BEQ	nosave
   597		MOVW	m_g0(R8), R3
   598		CMP	R3, g
   599		BEQ	nosave
   600		BL	gosave<>(SB)
   601		MOVW	R0, R5
   602		MOVW	R3, R0
   603		BL	setg<>(SB)
   604		MOVW	R5, R0
   605		MOVW	(g_sched+gobuf_sp)(g), R13
   606	
   607		// Now on a scheduling stack (a pthread-created stack).
   608		SUB	$24, R13
   609		BIC	$0x7, R13	// alignment for gcc ABI
   610		MOVW	R4, 20(R13) // save old g
   611		MOVW	(g_stack+stack_hi)(R4), R4
   612		SUB	R2, R4
   613		MOVW	R4, 16(R13)	// save depth in stack (can't just save SP, as stack might be copied during a callback)
   614		BL	(R1)
   615	
   616		// Restore registers, g, stack pointer.
   617		MOVW	R0, R5
   618		MOVW	20(R13), R0
   619		BL	setg<>(SB)
   620		MOVW	(g_stack+stack_hi)(g), R1
   621		MOVW	16(R13), R2
   622		SUB	R2, R1
   623		MOVW	R5, R0
   624		MOVW	R1, R13
   625	
   626		MOVW	R0, ret+8(FP)
   627		RET
   628	
   629	nosave:
   630		// Running on a system stack, perhaps even without a g.
   631		// Having no g can happen during thread creation or thread teardown
   632		// (see needm/dropm on Solaris, for example).
   633		// This code is like the above sequence but without saving/restoring g
   634		// and without worrying about the stack moving out from under us
   635		// (because we're on a system stack, not a goroutine stack).
   636		// The above code could be used directly if already on a system stack,
   637		// but then the only path through this code would be a rare case on Solaris.
   638		// Using this code for all "already on system stack" calls exercises it more,
   639		// which should help keep it correct.
   640		SUB	$24, R13
   641		BIC	$0x7, R13	// alignment for gcc ABI
   642		// save null g in case someone looks during debugging.
   643		MOVW	$0, R4
   644		MOVW	R4, 20(R13)
   645		MOVW	R2, 16(R13)	// Save old stack pointer.
   646		BL	(R1)
   647		// Restore stack pointer.
   648		MOVW	16(R13), R2
   649		MOVW	R2, R13
   650		MOVW	R0, ret+8(FP)
   651		RET
   652	
   653	// cgocallback(void (*fn)(void*), void *frame, uintptr framesize, uintptr ctxt)
   654	// Turn the fn into a Go func (by taking its address) and call
   655	// cgocallback_gofunc.
   656	TEXT runtime·cgocallback(SB),NOSPLIT,$16-16
   657		MOVW	$fn+0(FP), R0
   658		MOVW	R0, 4(R13)
   659		MOVW	frame+4(FP), R0
   660		MOVW	R0, 8(R13)
   661		MOVW	framesize+8(FP), R0
   662		MOVW	R0, 12(R13)
   663		MOVW	ctxt+12(FP), R0
   664		MOVW	R0, 16(R13)
   665		MOVW	$runtime·cgocallback_gofunc(SB), R0
   666		BL	(R0)
   667		RET
   668	
   669	// cgocallback_gofunc(void (*fn)(void*), void *frame, uintptr framesize, uintptr ctxt)
   670	// See cgocall.go for more details.
   671	TEXT	·cgocallback_gofunc(SB),NOSPLIT,$8-16
   672		NO_LOCAL_POINTERS
   673	
   674		// Load m and g from thread-local storage.
   675		MOVB	runtime·iscgo(SB), R0
   676		CMP	$0, R0
   677		BL.NE	runtime·load_g(SB)
   678	
   679		// If g is nil, Go did not create the current thread.
   680		// Call needm to obtain one for temporary use.
   681		// In this case, we're running on the thread stack, so there's
   682		// lots of space, but the linker doesn't know. Hide the call from
   683		// the linker analysis by using an indirect call.
   684		CMP	$0, g
   685		B.EQ	needm
   686	
   687		MOVW	g_m(g), R8
   688		MOVW	R8, savedm-4(SP)
   689		B	havem
   690	
   691	needm:
   692		MOVW	g, savedm-4(SP) // g is zero, so is m.
   693		MOVW	$runtime·needm(SB), R0
   694		BL	(R0)
   695	
   696		// Set m->sched.sp = SP, so that if a panic happens
   697		// during the function we are about to execute, it will
   698		// have a valid SP to run on the g0 stack.
   699		// The next few lines (after the havem label)
   700		// will save this SP onto the stack and then write
   701		// the same SP back to m->sched.sp. That seems redundant,
   702		// but if an unrecovered panic happens, unwindm will
   703		// restore the g->sched.sp from the stack location
   704		// and then systemstack will try to use it. If we don't set it here,
   705		// that restored SP will be uninitialized (typically 0) and
   706		// will not be usable.
   707		MOVW	g_m(g), R8
   708		MOVW	m_g0(R8), R3
   709		MOVW	R13, (g_sched+gobuf_sp)(R3)
   710	
   711	havem:
   712		// Now there's a valid m, and we're running on its m->g0.
   713		// Save current m->g0->sched.sp on stack and then set it to SP.
   714		// Save current sp in m->g0->sched.sp in preparation for
   715		// switch back to m->curg stack.
   716		// NOTE: unwindm knows that the saved g->sched.sp is at 4(R13) aka savedsp-8(SP).
   717		MOVW	m_g0(R8), R3
   718		MOVW	(g_sched+gobuf_sp)(R3), R4
   719		MOVW	R4, savedsp-8(SP)
   720		MOVW	R13, (g_sched+gobuf_sp)(R3)
   721	
   722		// Switch to m->curg stack and call runtime.cgocallbackg.
   723		// Because we are taking over the execution of m->curg
   724		// but *not* resuming what had been running, we need to
   725		// save that information (m->curg->sched) so we can restore it.
   726		// We can restore m->curg->sched.sp easily, because calling
   727		// runtime.cgocallbackg leaves SP unchanged upon return.
   728		// To save m->curg->sched.pc, we push it onto the stack.
   729		// This has the added benefit that it looks to the traceback
   730		// routine like cgocallbackg is going to return to that
   731		// PC (because the frame we allocate below has the same
   732		// size as cgocallback_gofunc's frame declared above)
   733		// so that the traceback will seamlessly trace back into
   734		// the earlier calls.
   735		//
   736		// In the new goroutine, -4(SP) is unused (where SP refers to
   737		// m->curg's SP while we're setting it up, before we've adjusted it).
   738		MOVW	m_curg(R8), R0
   739		BL	setg<>(SB)
   740		MOVW	(g_sched+gobuf_sp)(g), R4 // prepare stack as R4
   741		MOVW	(g_sched+gobuf_pc)(g), R5
   742		MOVW	R5, -12(R4)
   743		MOVW	ctxt+12(FP), R0
   744		MOVW	R0, -8(R4)
   745		MOVW	$-12(R4), R13
   746		BL	runtime·cgocallbackg(SB)
   747	
   748		// Restore g->sched (== m->curg->sched) from saved values.
   749		MOVW	0(R13), R5
   750		MOVW	R5, (g_sched+gobuf_pc)(g)
   751		MOVW	$12(R13), R4
   752		MOVW	R4, (g_sched+gobuf_sp)(g)
   753	
   754		// Switch back to m->g0's stack and restore m->g0->sched.sp.
   755		// (Unlike m->curg, the g0 goroutine never uses sched.pc,
   756		// so we do not have to restore it.)
   757		MOVW	g_m(g), R8
   758		MOVW	m_g0(R8), R0
   759		BL	setg<>(SB)
   760		MOVW	(g_sched+gobuf_sp)(g), R13
   761		MOVW	savedsp-8(SP), R4
   762		MOVW	R4, (g_sched+gobuf_sp)(g)
   763	
   764		// If the m on entry was nil, we called needm above to borrow an m
   765		// for the duration of the call. Since the call is over, return it with dropm.
   766		MOVW	savedm-4(SP), R6
   767		CMP	$0, R6
   768		B.NE	3(PC)
   769		MOVW	$runtime·dropm(SB), R0
   770		BL	(R0)
   771	
   772		// Done!
   773		RET
   774	
   775	// void setg(G*); set g. for use by needm.
   776	TEXT runtime·setg(SB),NOSPLIT|NOFRAME,$0-4
   777		MOVW	gg+0(FP), R0
   778		B	setg<>(SB)
   779	
   780	TEXT setg<>(SB),NOSPLIT|NOFRAME,$0-0
   781		MOVW	R0, g
   782	
   783		// Save g to thread-local storage.
   784	#ifdef GOOS_windows
   785		B	runtime·save_g(SB)
   786	#else
   787		MOVB	runtime·iscgo(SB), R0
   788		CMP	$0, R0
   789		B.EQ	2(PC)
   790		B	runtime·save_g(SB)
   791	
   792		MOVW	g, R0
   793		RET
   794	#endif
   795	
   796	TEXT runtime·emptyfunc(SB),0,$0-0
   797		RET
   798	
   799	TEXT runtime·abort(SB),NOSPLIT|NOFRAME,$0-0
   800		MOVW	$0, R0
   801		MOVW	(R0), R1
   802	
   803	// armPublicationBarrier is a native store/store barrier for ARMv7+.
   804	// On earlier ARM revisions, armPublicationBarrier is a no-op.
   805	// This will not work on SMP ARMv6 machines, if any are in use.
   806	// To implement publicationBarrier in sys_$GOOS_arm.s using the native
   807	// instructions, use:
   808	//
   809	//	TEXT ·publicationBarrier(SB),NOSPLIT|NOFRAME,$0-0
   810	//		B	runtime·armPublicationBarrier(SB)
   811	//
   812	TEXT runtime·armPublicationBarrier(SB),NOSPLIT|NOFRAME,$0-0
   813		MOVB	runtime·goarm(SB), R11
   814		CMP	$7, R11
   815		BLT	2(PC)
   816		DMB	MB_ST
   817		RET
   818	
   819	// AES hashing not implemented for ARM
   820	TEXT runtime·aeshash(SB),NOSPLIT|NOFRAME,$0-0
   821		MOVW	$0, R0
   822		MOVW	(R0), R1
   823	TEXT runtime·aeshash32(SB),NOSPLIT|NOFRAME,$0-0
   824		MOVW	$0, R0
   825		MOVW	(R0), R1
   826	TEXT runtime·aeshash64(SB),NOSPLIT|NOFRAME,$0-0
   827		MOVW	$0, R0
   828		MOVW	(R0), R1
   829	TEXT runtime·aeshashstr(SB),NOSPLIT|NOFRAME,$0-0
   830		MOVW	$0, R0
   831		MOVW	(R0), R1
   832	
   833	TEXT runtime·return0(SB),NOSPLIT,$0
   834		MOVW	$0, R0
   835		RET
   836	
   837	TEXT runtime·procyield(SB),NOSPLIT|NOFRAME,$0
   838		MOVW	cycles+0(FP), R1
   839		MOVW	$0, R0
   840	yieldloop:
   841		WORD	$0xe320f001	// YIELD (NOP pre-ARMv6K)
   842		CMP	R0, R1
   843		B.NE	2(PC)
   844		RET
   845		SUB	$1, R1
   846		B yieldloop
   847	
   848	// Called from cgo wrappers, this function returns g->m->curg.stack.hi.
   849	// Must obey the gcc calling convention.
   850	TEXT _cgo_topofstack(SB),NOSPLIT,$8
   851		// R11 and g register are clobbered by load_g. They are
   852		// callee-save in the gcc calling convention, so save them here.
   853		MOVW	R11, saveR11-4(SP)
   854		MOVW	g, saveG-8(SP)
   855	
   856		BL	runtime·load_g(SB)
   857		MOVW	g_m(g), R0
   858		MOVW	m_curg(R0), R0
   859		MOVW	(g_stack+stack_hi)(R0), R0
   860	
   861		MOVW	saveG-8(SP), g
   862		MOVW	saveR11-4(SP), R11
   863		RET
   864	
   865	// The top-most function running on a goroutine
   866	// returns to goexit+PCQuantum.
   867	TEXT runtime·goexit(SB),NOSPLIT|NOFRAME|TOPFRAME,$0-0
   868		MOVW	R0, R0	// NOP
   869		BL	runtime·goexit1(SB)	// does not return
   870		// traceback from goexit1 must hit code range of goexit
   871		MOVW	R0, R0	// NOP
   872	
   873	// x -> x/1000000, x%1000000, called from Go with args, results on stack.
   874	TEXT runtime·usplit(SB),NOSPLIT,$0-12
   875		MOVW	x+0(FP), R0
   876		CALL	runtime·usplitR0(SB)
   877		MOVW	R0, q+4(FP)
   878		MOVW	R1, r+8(FP)
   879		RET
   880	
   881	// R0, R1 = R0/1000000, R0%1000000
   882	TEXT runtime·usplitR0(SB),NOSPLIT,$0
   883		// magic multiply to avoid software divide without available m.
   884		// see output of go tool compile -S for x/1000000.
   885		MOVW	R0, R3
   886		MOVW	$1125899907, R1
   887		MULLU	R1, R0, (R0, R1)
   888		MOVW	R0>>18, R0
   889		MOVW	$1000000, R1
   890		MULU	R0, R1
   891		SUB	R1, R3, R1
   892		RET
   893	
   894	#ifndef GOOS_nacl
   895	// This is called from .init_array and follows the platform, not Go, ABI.
   896	TEXT runtime·addmoduledata(SB),NOSPLIT,$0-0
   897		MOVW	R9, saver9-4(SP) // The access to global variables below implicitly uses R9, which is callee-save
   898		MOVW	R11, saver11-8(SP) // Likewise, R11 is the temp register, but callee-save in C ABI
   899		MOVW	runtime·lastmoduledatap(SB), R1
   900		MOVW	R0, moduledata_next(R1)
   901		MOVW	R0, runtime·lastmoduledatap(SB)
   902		MOVW	saver11-8(SP), R11
   903		MOVW	saver9-4(SP), R9
   904		RET
   905	#endif
   906	
   907	TEXT ·checkASM(SB),NOSPLIT,$0-1
   908		MOVW	$1, R3
   909		MOVB	R3, ret+0(FP)
   910		RET
   911	
   912	// gcWriteBarrier performs a heap pointer write and informs the GC.
   913	//
   914	// gcWriteBarrier does NOT follow the Go ABI. It takes two arguments:
   915	// - R2 is the destination of the write
   916	// - R3 is the value being written at R2
   917	// It clobbers condition codes.
   918	// It does not clobber any other general-purpose registers,
   919	// but may clobber others (e.g., floating point registers).
   920	// The act of CALLing gcWriteBarrier will clobber R14 (LR).
   921	TEXT runtime·gcWriteBarrier(SB),NOSPLIT|NOFRAME,$0
   922		// Save the registers clobbered by the fast path.
   923		MOVM.DB.W	[R0,R1], (R13)
   924		MOVW	g_m(g), R0
   925		MOVW	m_p(R0), R0
   926		MOVW	(p_wbBuf+wbBuf_next)(R0), R1
   927		// Increment wbBuf.next position.
   928		ADD	$8, R1
   929		MOVW	R1, (p_wbBuf+wbBuf_next)(R0)
   930		MOVW	(p_wbBuf+wbBuf_end)(R0), R0
   931		CMP	R1, R0
   932		// Record the write.
   933		MOVW	R3, -8(R1)	// Record value
   934		MOVW	(R2), R0	// TODO: This turns bad writes into bad reads.
   935		MOVW	R0, -4(R1)	// Record *slot
   936		// Is the buffer full? (flags set in CMP above)
   937		B.EQ	flush
   938	ret:
   939		MOVM.IA.W	(R13), [R0,R1]
   940		// Do the write.
   941		MOVW	R3, (R2)
   942		// Normally RET on nacl clobbers R12, but because this
   943		// function has no frame it doesn't have to usual epilogue.
   944		RET
   945	
   946	flush:
   947		// Save all general purpose registers since these could be
   948		// clobbered by wbBufFlush and were not saved by the caller.
   949		//
   950		// R0 and R1 were saved at entry.
   951		// R10 is g, so preserved.
   952		// R11 is linker temp, so no need to save.
   953		// R13 is stack pointer.
   954		// R15 is PC.
   955		//
   956		// This also sets up R2 and R3 as the arguments to wbBufFlush.
   957		MOVM.DB.W	[R2-R9,R12], (R13)
   958		// Save R14 (LR) because the fast path above doesn't save it,
   959		// but needs it to RET. This is after the MOVM so it appears below
   960		// the arguments in the stack frame.
   961		MOVM.DB.W	[R14], (R13)
   962	
   963		// This takes arguments R2 and R3.
   964		CALL	runtime·wbBufFlush(SB)
   965	
   966		MOVM.IA.W	(R13), [R14]
   967		MOVM.IA.W	(R13), [R2-R9,R12]
   968		JMP	ret
   969	
   970	// Note: these functions use a special calling convention to save generated code space.
   971	// Arguments are passed in registers, but the space for those arguments are allocated
   972	// in the caller's stack frame. These stubs write the args into that stack space and
   973	// then tail call to the corresponding runtime handler.
   974	// The tail call makes these stubs disappear in backtraces.
   975	TEXT runtime·panicIndex(SB),NOSPLIT,$0-8
   976		MOVW	R0, x+0(FP)
   977		MOVW	R1, y+4(FP)
   978		JMP	runtime·goPanicIndex(SB)
   979	TEXT runtime·panicIndexU(SB),NOSPLIT,$0-8
   980		MOVW	R0, x+0(FP)
   981		MOVW	R1, y+4(FP)
   982		JMP	runtime·goPanicIndexU(SB)
   983	TEXT runtime·panicSliceAlen(SB),NOSPLIT,$0-8
   984		MOVW	R1, x+0(FP)
   985		MOVW	R2, y+4(FP)
   986		JMP	runtime·goPanicSliceAlen(SB)
   987	TEXT runtime·panicSliceAlenU(SB),NOSPLIT,$0-8
   988		MOVW	R1, x+0(FP)
   989		MOVW	R2, y+4(FP)
   990		JMP	runtime·goPanicSliceAlenU(SB)
   991	TEXT runtime·panicSliceAcap(SB),NOSPLIT,$0-8
   992		MOVW	R1, x+0(FP)
   993		MOVW	R2, y+4(FP)
   994		JMP	runtime·goPanicSliceAcap(SB)
   995	TEXT runtime·panicSliceAcapU(SB),NOSPLIT,$0-8
   996		MOVW	R1, x+0(FP)
   997		MOVW	R2, y+4(FP)
   998		JMP	runtime·goPanicSliceAcapU(SB)
   999	TEXT runtime·panicSliceB(SB),NOSPLIT,$0-8
  1000		MOVW	R0, x+0(FP)
  1001		MOVW	R1, y+4(FP)
  1002		JMP	runtime·goPanicSliceB(SB)
  1003	TEXT runtime·panicSliceBU(SB),NOSPLIT,$0-8
  1004		MOVW	R0, x+0(FP)
  1005		MOVW	R1, y+4(FP)
  1006		JMP	runtime·goPanicSliceBU(SB)
  1007	TEXT runtime·panicSlice3Alen(SB),NOSPLIT,$0-8
  1008		MOVW	R2, x+0(FP)
  1009		MOVW	R3, y+4(FP)
  1010		JMP	runtime·goPanicSlice3Alen(SB)
  1011	TEXT runtime·panicSlice3AlenU(SB),NOSPLIT,$0-8
  1012		MOVW	R2, x+0(FP)
  1013		MOVW	R3, y+4(FP)
  1014		JMP	runtime·goPanicSlice3AlenU(SB)
  1015	TEXT runtime·panicSlice3Acap(SB),NOSPLIT,$0-8
  1016		MOVW	R2, x+0(FP)
  1017		MOVW	R3, y+4(FP)
  1018		JMP	runtime·goPanicSlice3Acap(SB)
  1019	TEXT runtime·panicSlice3AcapU(SB),NOSPLIT,$0-8
  1020		MOVW	R2, x+0(FP)
  1021		MOVW	R3, y+4(FP)
  1022		JMP	runtime·goPanicSlice3AcapU(SB)
  1023	TEXT runtime·panicSlice3B(SB),NOSPLIT,$0-8
  1024		MOVW	R1, x+0(FP)
  1025		MOVW	R2, y+4(FP)
  1026		JMP	runtime·goPanicSlice3B(SB)
  1027	TEXT runtime·panicSlice3BU(SB),NOSPLIT,$0-8
  1028		MOVW	R1, x+0(FP)
  1029		MOVW	R2, y+4(FP)
  1030		JMP	runtime·goPanicSlice3BU(SB)
  1031	TEXT runtime·panicSlice3C(SB),NOSPLIT,$0-8
  1032		MOVW	R0, x+0(FP)
  1033		MOVW	R1, y+4(FP)
  1034		JMP	runtime·goPanicSlice3C(SB)
  1035	TEXT runtime·panicSlice3CU(SB),NOSPLIT,$0-8
  1036		MOVW	R0, x+0(FP)
  1037		MOVW	R1, y+4(FP)
  1038		JMP	runtime·goPanicSlice3CU(SB)
  1039	
  1040	// Extended versions for 64-bit indexes.
  1041	TEXT runtime·panicExtendIndex(SB),NOSPLIT,$0-12
  1042		MOVW	R4, hi+0(FP)
  1043		MOVW	R0, lo+4(FP)
  1044		MOVW	R1, y+8(FP)
  1045		JMP	runtime·goPanicExtendIndex(SB)
  1046	TEXT runtime·panicExtendIndexU(SB),NOSPLIT,$0-12
  1047		MOVW	R4, hi+0(FP)
  1048		MOVW	R0, lo+4(FP)
  1049		MOVW	R1, y+8(FP)
  1050		JMP	runtime·goPanicExtendIndexU(SB)
  1051	TEXT runtime·panicExtendSliceAlen(SB),NOSPLIT,$0-12
  1052		MOVW	R4, hi+0(FP)
  1053		MOVW	R1, lo+4(FP)
  1054		MOVW	R2, y+8(FP)
  1055		JMP	runtime·goPanicExtendSliceAlen(SB)
  1056	TEXT runtime·panicExtendSliceAlenU(SB),NOSPLIT,$0-12
  1057		MOVW	R4, hi+0(FP)
  1058		MOVW	R1, lo+4(FP)
  1059		MOVW	R2, y+8(FP)
  1060		JMP	runtime·goPanicExtendSliceAlenU(SB)
  1061	TEXT runtime·panicExtendSliceAcap(SB),NOSPLIT,$0-12
  1062		MOVW	R4, hi+0(FP)
  1063		MOVW	R1, lo+4(FP)
  1064		MOVW	R2, y+8(FP)
  1065		JMP	runtime·goPanicExtendSliceAcap(SB)
  1066	TEXT runtime·panicExtendSliceAcapU(SB),NOSPLIT,$0-12
  1067		MOVW	R4, hi+0(FP)
  1068		MOVW	R1, lo+4(FP)
  1069		MOVW	R2, y+8(FP)
  1070		JMP	runtime·goPanicExtendSliceAcapU(SB)
  1071	TEXT runtime·panicExtendSliceB(SB),NOSPLIT,$0-12
  1072		MOVW	R4, hi+0(FP)
  1073		MOVW	R0, lo+4(FP)
  1074		MOVW	R1, y+8(FP)
  1075		JMP	runtime·goPanicExtendSliceB(SB)
  1076	TEXT runtime·panicExtendSliceBU(SB),NOSPLIT,$0-12
  1077		MOVW	R4, hi+0(FP)
  1078		MOVW	R0, lo+4(FP)
  1079		MOVW	R1, y+8(FP)
  1080		JMP	runtime·goPanicExtendSliceBU(SB)
  1081	TEXT runtime·panicExtendSlice3Alen(SB),NOSPLIT,$0-12
  1082		MOVW	R4, hi+0(FP)
  1083		MOVW	R2, lo+4(FP)
  1084		MOVW	R3, y+8(FP)
  1085		JMP	runtime·goPanicExtendSlice3Alen(SB)
  1086	TEXT runtime·panicExtendSlice3AlenU(SB),NOSPLIT,$0-12
  1087		MOVW	R4, hi+0(FP)
  1088		MOVW	R2, lo+4(FP)
  1089		MOVW	R3, y+8(FP)
  1090		JMP	runtime·goPanicExtendSlice3AlenU(SB)
  1091	TEXT runtime·panicExtendSlice3Acap(SB),NOSPLIT,$0-12
  1092		MOVW	R4, hi+0(FP)
  1093		MOVW	R2, lo+4(FP)
  1094		MOVW	R3, y+8(FP)
  1095		JMP	runtime·goPanicExtendSlice3Acap(SB)
  1096	TEXT runtime·panicExtendSlice3AcapU(SB),NOSPLIT,$0-12
  1097		MOVW	R4, hi+0(FP)
  1098		MOVW	R2, lo+4(FP)
  1099		MOVW	R3, y+8(FP)
  1100		JMP	runtime·goPanicExtendSlice3AcapU(SB)
  1101	TEXT runtime·panicExtendSlice3B(SB),NOSPLIT,$0-12
  1102		MOVW	R4, hi+0(FP)
  1103		MOVW	R1, lo+4(FP)
  1104		MOVW	R2, y+8(FP)
  1105		JMP	runtime·goPanicExtendSlice3B(SB)
  1106	TEXT runtime·panicExtendSlice3BU(SB),NOSPLIT,$0-12
  1107		MOVW	R4, hi+0(FP)
  1108		MOVW	R1, lo+4(FP)
  1109		MOVW	R2, y+8(FP)
  1110		JMP	runtime·goPanicExtendSlice3BU(SB)
  1111	TEXT runtime·panicExtendSlice3C(SB),NOSPLIT,$0-12
  1112		MOVW	R4, hi+0(FP)
  1113		MOVW	R0, lo+4(FP)
  1114		MOVW	R1, y+8(FP)
  1115		JMP	runtime·goPanicExtendSlice3C(SB)
  1116	TEXT runtime·panicExtendSlice3CU(SB),NOSPLIT,$0-12
  1117		MOVW	R4, hi+0(FP)
  1118		MOVW	R0, lo+4(FP)
  1119		MOVW	R1, y+8(FP)
  1120		JMP	runtime·goPanicExtendSlice3CU(SB)

View as plain text