...

Source file src/pkg/reflect/value.go

     1	// Copyright 2009 The Go Authors. All rights reserved.
     2	// Use of this source code is governed by a BSD-style
     3	// license that can be found in the LICENSE file.
     4	
     5	package reflect
     6	
     7	import (
     8		"math"
     9		"runtime"
    10		"unsafe"
    11	)
    12	
    13	const ptrSize = 4 << (^uintptr(0) >> 63) // unsafe.Sizeof(uintptr(0)) but an ideal const
    14	
    15	// Value is the reflection interface to a Go value.
    16	//
    17	// Not all methods apply to all kinds of values. Restrictions,
    18	// if any, are noted in the documentation for each method.
    19	// Use the Kind method to find out the kind of value before
    20	// calling kind-specific methods. Calling a method
    21	// inappropriate to the kind of type causes a run time panic.
    22	//
    23	// The zero Value represents no value.
    24	// Its IsValid method returns false, its Kind method returns Invalid,
    25	// its String method returns "<invalid Value>", and all other methods panic.
    26	// Most functions and methods never return an invalid value.
    27	// If one does, its documentation states the conditions explicitly.
    28	//
    29	// A Value can be used concurrently by multiple goroutines provided that
    30	// the underlying Go value can be used concurrently for the equivalent
    31	// direct operations.
    32	//
    33	// To compare two Values, compare the results of the Interface method.
    34	// Using == on two Values does not compare the underlying values
    35	// they represent.
    36	type Value struct {
    37		// typ holds the type of the value represented by a Value.
    38		typ *rtype
    39	
    40		// Pointer-valued data or, if flagIndir is set, pointer to data.
    41		// Valid when either flagIndir is set or typ.pointers() is true.
    42		ptr unsafe.Pointer
    43	
    44		// flag holds metadata about the value.
    45		// The lowest bits are flag bits:
    46		//	- flagStickyRO: obtained via unexported not embedded field, so read-only
    47		//	- flagEmbedRO: obtained via unexported embedded field, so read-only
    48		//	- flagIndir: val holds a pointer to the data
    49		//	- flagAddr: v.CanAddr is true (implies flagIndir)
    50		//	- flagMethod: v is a method value.
    51		// The next five bits give the Kind of the value.
    52		// This repeats typ.Kind() except for method values.
    53		// The remaining 23+ bits give a method number for method values.
    54		// If flag.kind() != Func, code can assume that flagMethod is unset.
    55		// If ifaceIndir(typ), code can assume that flagIndir is set.
    56		flag
    57	
    58		// A method value represents a curried method invocation
    59		// like r.Read for some receiver r. The typ+val+flag bits describe
    60		// the receiver r, but the flag's Kind bits say Func (methods are
    61		// functions), and the top bits of the flag give the method number
    62		// in r's type's method table.
    63	}
    64	
    65	type flag uintptr
    66	
    67	const (
    68		flagKindWidth        = 5 // there are 27 kinds
    69		flagKindMask    flag = 1<<flagKindWidth - 1
    70		flagStickyRO    flag = 1 << 5
    71		flagEmbedRO     flag = 1 << 6
    72		flagIndir       flag = 1 << 7
    73		flagAddr        flag = 1 << 8
    74		flagMethod      flag = 1 << 9
    75		flagMethodShift      = 10
    76		flagRO          flag = flagStickyRO | flagEmbedRO
    77	)
    78	
    79	func (f flag) kind() Kind {
    80		return Kind(f & flagKindMask)
    81	}
    82	
    83	func (f flag) ro() flag {
    84		if f&flagRO != 0 {
    85			return flagStickyRO
    86		}
    87		return 0
    88	}
    89	
    90	// pointer returns the underlying pointer represented by v.
    91	// v.Kind() must be Ptr, Map, Chan, Func, or UnsafePointer
    92	func (v Value) pointer() unsafe.Pointer {
    93		if v.typ.size != ptrSize || !v.typ.pointers() {
    94			panic("can't call pointer on a non-pointer Value")
    95		}
    96		if v.flag&flagIndir != 0 {
    97			return *(*unsafe.Pointer)(v.ptr)
    98		}
    99		return v.ptr
   100	}
   101	
   102	// packEface converts v to the empty interface.
   103	func packEface(v Value) interface{} {
   104		t := v.typ
   105		var i interface{}
   106		e := (*emptyInterface)(unsafe.Pointer(&i))
   107		// First, fill in the data portion of the interface.
   108		switch {
   109		case ifaceIndir(t):
   110			if v.flag&flagIndir == 0 {
   111				panic("bad indir")
   112			}
   113			// Value is indirect, and so is the interface we're making.
   114			ptr := v.ptr
   115			if v.flag&flagAddr != 0 {
   116				// TODO: pass safe boolean from valueInterface so
   117				// we don't need to copy if safe==true?
   118				c := unsafe_New(t)
   119				typedmemmove(t, c, ptr)
   120				ptr = c
   121			}
   122			e.word = ptr
   123		case v.flag&flagIndir != 0:
   124			// Value is indirect, but interface is direct. We need
   125			// to load the data at v.ptr into the interface data word.
   126			e.word = *(*unsafe.Pointer)(v.ptr)
   127		default:
   128			// Value is direct, and so is the interface.
   129			e.word = v.ptr
   130		}
   131		// Now, fill in the type portion. We're very careful here not
   132		// to have any operation between the e.word and e.typ assignments
   133		// that would let the garbage collector observe the partially-built
   134		// interface value.
   135		e.typ = t
   136		return i
   137	}
   138	
   139	// unpackEface converts the empty interface i to a Value.
   140	func unpackEface(i interface{}) Value {
   141		e := (*emptyInterface)(unsafe.Pointer(&i))
   142		// NOTE: don't read e.word until we know whether it is really a pointer or not.
   143		t := e.typ
   144		if t == nil {
   145			return Value{}
   146		}
   147		f := flag(t.Kind())
   148		if ifaceIndir(t) {
   149			f |= flagIndir
   150		}
   151		return Value{t, e.word, f}
   152	}
   153	
   154	// A ValueError occurs when a Value method is invoked on
   155	// a Value that does not support it. Such cases are documented
   156	// in the description of each method.
   157	type ValueError struct {
   158		Method string
   159		Kind   Kind
   160	}
   161	
   162	func (e *ValueError) Error() string {
   163		if e.Kind == 0 {
   164			return "reflect: call of " + e.Method + " on zero Value"
   165		}
   166		return "reflect: call of " + e.Method + " on " + e.Kind.String() + " Value"
   167	}
   168	
   169	// methodName returns the name of the calling method,
   170	// assumed to be two stack frames above.
   171	func methodName() string {
   172		pc, _, _, _ := runtime.Caller(2)
   173		f := runtime.FuncForPC(pc)
   174		if f == nil {
   175			return "unknown method"
   176		}
   177		return f.Name()
   178	}
   179	
   180	// emptyInterface is the header for an interface{} value.
   181	type emptyInterface struct {
   182		typ  *rtype
   183		word unsafe.Pointer
   184	}
   185	
   186	// nonEmptyInterface is the header for an interface value with methods.
   187	type nonEmptyInterface struct {
   188		// see ../runtime/iface.go:/Itab
   189		itab *struct {
   190			ityp *rtype // static interface type
   191			typ  *rtype // dynamic concrete type
   192			hash uint32 // copy of typ.hash
   193			_    [4]byte
   194			fun  [100000]unsafe.Pointer // method table
   195		}
   196		word unsafe.Pointer
   197	}
   198	
   199	// mustBe panics if f's kind is not expected.
   200	// Making this a method on flag instead of on Value
   201	// (and embedding flag in Value) means that we can write
   202	// the very clear v.mustBe(Bool) and have it compile into
   203	// v.flag.mustBe(Bool), which will only bother to copy the
   204	// single important word for the receiver.
   205	func (f flag) mustBe(expected Kind) {
   206		// TODO(mvdan): use f.kind() again once mid-stack inlining gets better
   207		if Kind(f&flagKindMask) != expected {
   208			panic(&ValueError{methodName(), f.kind()})
   209		}
   210	}
   211	
   212	// mustBeExported panics if f records that the value was obtained using
   213	// an unexported field.
   214	func (f flag) mustBeExported() {
   215		if f == 0 || f&flagRO != 0 {
   216			f.mustBeExportedSlow()
   217		}
   218	}
   219	
   220	func (f flag) mustBeExportedSlow() {
   221		if f == 0 {
   222			panic(&ValueError{methodName(), Invalid})
   223		}
   224		if f&flagRO != 0 {
   225			panic("reflect: " + methodName() + " using value obtained using unexported field")
   226		}
   227	}
   228	
   229	// mustBeAssignable panics if f records that the value is not assignable,
   230	// which is to say that either it was obtained using an unexported field
   231	// or it is not addressable.
   232	func (f flag) mustBeAssignable() {
   233		if f&flagRO != 0 || f&flagAddr == 0 {
   234			f.mustBeAssignableSlow()
   235		}
   236	}
   237	
   238	func (f flag) mustBeAssignableSlow() {
   239		if f == 0 {
   240			panic(&ValueError{methodName(), Invalid})
   241		}
   242		// Assignable if addressable and not read-only.
   243		if f&flagRO != 0 {
   244			panic("reflect: " + methodName() + " using value obtained using unexported field")
   245		}
   246		if f&flagAddr == 0 {
   247			panic("reflect: " + methodName() + " using unaddressable value")
   248		}
   249	}
   250	
   251	// Addr returns a pointer value representing the address of v.
   252	// It panics if CanAddr() returns false.
   253	// Addr is typically used to obtain a pointer to a struct field
   254	// or slice element in order to call a method that requires a
   255	// pointer receiver.
   256	func (v Value) Addr() Value {
   257		if v.flag&flagAddr == 0 {
   258			panic("reflect.Value.Addr of unaddressable value")
   259		}
   260		return Value{v.typ.ptrTo(), v.ptr, v.flag.ro() | flag(Ptr)}
   261	}
   262	
   263	// Bool returns v's underlying value.
   264	// It panics if v's kind is not Bool.
   265	func (v Value) Bool() bool {
   266		v.mustBe(Bool)
   267		return *(*bool)(v.ptr)
   268	}
   269	
   270	// Bytes returns v's underlying value.
   271	// It panics if v's underlying value is not a slice of bytes.
   272	func (v Value) Bytes() []byte {
   273		v.mustBe(Slice)
   274		if v.typ.Elem().Kind() != Uint8 {
   275			panic("reflect.Value.Bytes of non-byte slice")
   276		}
   277		// Slice is always bigger than a word; assume flagIndir.
   278		return *(*[]byte)(v.ptr)
   279	}
   280	
   281	// runes returns v's underlying value.
   282	// It panics if v's underlying value is not a slice of runes (int32s).
   283	func (v Value) runes() []rune {
   284		v.mustBe(Slice)
   285		if v.typ.Elem().Kind() != Int32 {
   286			panic("reflect.Value.Bytes of non-rune slice")
   287		}
   288		// Slice is always bigger than a word; assume flagIndir.
   289		return *(*[]rune)(v.ptr)
   290	}
   291	
   292	// CanAddr reports whether the value's address can be obtained with Addr.
   293	// Such values are called addressable. A value is addressable if it is
   294	// an element of a slice, an element of an addressable array,
   295	// a field of an addressable struct, or the result of dereferencing a pointer.
   296	// If CanAddr returns false, calling Addr will panic.
   297	func (v Value) CanAddr() bool {
   298		return v.flag&flagAddr != 0
   299	}
   300	
   301	// CanSet reports whether the value of v can be changed.
   302	// A Value can be changed only if it is addressable and was not
   303	// obtained by the use of unexported struct fields.
   304	// If CanSet returns false, calling Set or any type-specific
   305	// setter (e.g., SetBool, SetInt) will panic.
   306	func (v Value) CanSet() bool {
   307		return v.flag&(flagAddr|flagRO) == flagAddr
   308	}
   309	
   310	// Call calls the function v with the input arguments in.
   311	// For example, if len(in) == 3, v.Call(in) represents the Go call v(in[0], in[1], in[2]).
   312	// Call panics if v's Kind is not Func.
   313	// It returns the output results as Values.
   314	// As in Go, each input argument must be assignable to the
   315	// type of the function's corresponding input parameter.
   316	// If v is a variadic function, Call creates the variadic slice parameter
   317	// itself, copying in the corresponding values.
   318	func (v Value) Call(in []Value) []Value {
   319		v.mustBe(Func)
   320		v.mustBeExported()
   321		return v.call("Call", in)
   322	}
   323	
   324	// CallSlice calls the variadic function v with the input arguments in,
   325	// assigning the slice in[len(in)-1] to v's final variadic argument.
   326	// For example, if len(in) == 3, v.CallSlice(in) represents the Go call v(in[0], in[1], in[2]...).
   327	// CallSlice panics if v's Kind is not Func or if v is not variadic.
   328	// It returns the output results as Values.
   329	// As in Go, each input argument must be assignable to the
   330	// type of the function's corresponding input parameter.
   331	func (v Value) CallSlice(in []Value) []Value {
   332		v.mustBe(Func)
   333		v.mustBeExported()
   334		return v.call("CallSlice", in)
   335	}
   336	
   337	var callGC bool // for testing; see TestCallMethodJump
   338	
   339	func (v Value) call(op string, in []Value) []Value {
   340		// Get function pointer, type.
   341		t := (*funcType)(unsafe.Pointer(v.typ))
   342		var (
   343			fn       unsafe.Pointer
   344			rcvr     Value
   345			rcvrtype *rtype
   346		)
   347		if v.flag&flagMethod != 0 {
   348			rcvr = v
   349			rcvrtype, t, fn = methodReceiver(op, v, int(v.flag)>>flagMethodShift)
   350		} else if v.flag&flagIndir != 0 {
   351			fn = *(*unsafe.Pointer)(v.ptr)
   352		} else {
   353			fn = v.ptr
   354		}
   355	
   356		if fn == nil {
   357			panic("reflect.Value.Call: call of nil function")
   358		}
   359	
   360		isSlice := op == "CallSlice"
   361		n := t.NumIn()
   362		if isSlice {
   363			if !t.IsVariadic() {
   364				panic("reflect: CallSlice of non-variadic function")
   365			}
   366			if len(in) < n {
   367				panic("reflect: CallSlice with too few input arguments")
   368			}
   369			if len(in) > n {
   370				panic("reflect: CallSlice with too many input arguments")
   371			}
   372		} else {
   373			if t.IsVariadic() {
   374				n--
   375			}
   376			if len(in) < n {
   377				panic("reflect: Call with too few input arguments")
   378			}
   379			if !t.IsVariadic() && len(in) > n {
   380				panic("reflect: Call with too many input arguments")
   381			}
   382		}
   383		for _, x := range in {
   384			if x.Kind() == Invalid {
   385				panic("reflect: " + op + " using zero Value argument")
   386			}
   387		}
   388		for i := 0; i < n; i++ {
   389			if xt, targ := in[i].Type(), t.In(i); !xt.AssignableTo(targ) {
   390				panic("reflect: " + op + " using " + xt.String() + " as type " + targ.String())
   391			}
   392		}
   393		if !isSlice && t.IsVariadic() {
   394			// prepare slice for remaining values
   395			m := len(in) - n
   396			slice := MakeSlice(t.In(n), m, m)
   397			elem := t.In(n).Elem()
   398			for i := 0; i < m; i++ {
   399				x := in[n+i]
   400				if xt := x.Type(); !xt.AssignableTo(elem) {
   401					panic("reflect: cannot use " + xt.String() + " as type " + elem.String() + " in " + op)
   402				}
   403				slice.Index(i).Set(x)
   404			}
   405			origIn := in
   406			in = make([]Value, n+1)
   407			copy(in[:n], origIn)
   408			in[n] = slice
   409		}
   410	
   411		nin := len(in)
   412		if nin != t.NumIn() {
   413			panic("reflect.Value.Call: wrong argument count")
   414		}
   415		nout := t.NumOut()
   416	
   417		// Compute frame type.
   418		frametype, _, retOffset, _, framePool := funcLayout(t, rcvrtype)
   419	
   420		// Allocate a chunk of memory for frame.
   421		var args unsafe.Pointer
   422		if nout == 0 {
   423			args = framePool.Get().(unsafe.Pointer)
   424		} else {
   425			// Can't use pool if the function has return values.
   426			// We will leak pointer to args in ret, so its lifetime is not scoped.
   427			args = unsafe_New(frametype)
   428		}
   429		off := uintptr(0)
   430	
   431		// Copy inputs into args.
   432		if rcvrtype != nil {
   433			storeRcvr(rcvr, args)
   434			off = ptrSize
   435		}
   436		for i, v := range in {
   437			v.mustBeExported()
   438			targ := t.In(i).(*rtype)
   439			a := uintptr(targ.align)
   440			off = (off + a - 1) &^ (a - 1)
   441			n := targ.size
   442			if n == 0 {
   443				// Not safe to compute args+off pointing at 0 bytes,
   444				// because that might point beyond the end of the frame,
   445				// but we still need to call assignTo to check assignability.
   446				v.assignTo("reflect.Value.Call", targ, nil)
   447				continue
   448			}
   449			addr := add(args, off, "n > 0")
   450			v = v.assignTo("reflect.Value.Call", targ, addr)
   451			if v.flag&flagIndir != 0 {
   452				typedmemmove(targ, addr, v.ptr)
   453			} else {
   454				*(*unsafe.Pointer)(addr) = v.ptr
   455			}
   456			off += n
   457		}
   458	
   459		// Call.
   460		call(frametype, fn, args, uint32(frametype.size), uint32(retOffset))
   461	
   462		// For testing; see TestCallMethodJump.
   463		if callGC {
   464			runtime.GC()
   465		}
   466	
   467		var ret []Value
   468		if nout == 0 {
   469			typedmemclr(frametype, args)
   470			framePool.Put(args)
   471		} else {
   472			// Zero the now unused input area of args,
   473			// because the Values returned by this function contain pointers to the args object,
   474			// and will thus keep the args object alive indefinitely.
   475			typedmemclrpartial(frametype, args, 0, retOffset)
   476	
   477			// Wrap Values around return values in args.
   478			ret = make([]Value, nout)
   479			off = retOffset
   480			for i := 0; i < nout; i++ {
   481				tv := t.Out(i)
   482				a := uintptr(tv.Align())
   483				off = (off + a - 1) &^ (a - 1)
   484				if tv.Size() != 0 {
   485					fl := flagIndir | flag(tv.Kind())
   486					ret[i] = Value{tv.common(), add(args, off, "tv.Size() != 0"), fl}
   487					// Note: this does introduce false sharing between results -
   488					// if any result is live, they are all live.
   489					// (And the space for the args is live as well, but as we've
   490					// cleared that space it isn't as big a deal.)
   491				} else {
   492					// For zero-sized return value, args+off may point to the next object.
   493					// In this case, return the zero value instead.
   494					ret[i] = Zero(tv)
   495				}
   496				off += tv.Size()
   497			}
   498		}
   499	
   500		return ret
   501	}
   502	
   503	// callReflect is the call implementation used by a function
   504	// returned by MakeFunc. In many ways it is the opposite of the
   505	// method Value.call above. The method above converts a call using Values
   506	// into a call of a function with a concrete argument frame, while
   507	// callReflect converts a call of a function with a concrete argument
   508	// frame into a call using Values.
   509	// It is in this file so that it can be next to the call method above.
   510	// The remainder of the MakeFunc implementation is in makefunc.go.
   511	//
   512	// NOTE: This function must be marked as a "wrapper" in the generated code,
   513	// so that the linker can make it work correctly for panic and recover.
   514	// The gc compilers know to do that for the name "reflect.callReflect".
   515	//
   516	// ctxt is the "closure" generated by MakeFunc.
   517	// frame is a pointer to the arguments to that closure on the stack.
   518	// retValid points to a boolean which should be set when the results
   519	// section of frame is set.
   520	func callReflect(ctxt *makeFuncImpl, frame unsafe.Pointer, retValid *bool) {
   521		ftyp := ctxt.ftyp
   522		f := ctxt.fn
   523	
   524		// Copy argument frame into Values.
   525		ptr := frame
   526		off := uintptr(0)
   527		in := make([]Value, 0, int(ftyp.inCount))
   528		for _, typ := range ftyp.in() {
   529			off += -off & uintptr(typ.align-1)
   530			v := Value{typ, nil, flag(typ.Kind())}
   531			if ifaceIndir(typ) {
   532				// value cannot be inlined in interface data.
   533				// Must make a copy, because f might keep a reference to it,
   534				// and we cannot let f keep a reference to the stack frame
   535				// after this function returns, not even a read-only reference.
   536				v.ptr = unsafe_New(typ)
   537				if typ.size > 0 {
   538					typedmemmove(typ, v.ptr, add(ptr, off, "typ.size > 0"))
   539				}
   540				v.flag |= flagIndir
   541			} else {
   542				v.ptr = *(*unsafe.Pointer)(add(ptr, off, "1-ptr"))
   543			}
   544			in = append(in, v)
   545			off += typ.size
   546		}
   547	
   548		// Call underlying function.
   549		out := f(in)
   550		numOut := ftyp.NumOut()
   551		if len(out) != numOut {
   552			panic("reflect: wrong return count from function created by MakeFunc")
   553		}
   554	
   555		// Copy results back into argument frame.
   556		if numOut > 0 {
   557			off += -off & (ptrSize - 1)
   558			if runtime.GOARCH == "amd64p32" {
   559				off = align(off, 8)
   560			}
   561			for i, typ := range ftyp.out() {
   562				v := out[i]
   563				if v.typ == nil {
   564					panic("reflect: function created by MakeFunc using " + funcName(f) +
   565						" returned zero Value")
   566				}
   567				if v.flag&flagRO != 0 {
   568					panic("reflect: function created by MakeFunc using " + funcName(f) +
   569						" returned value obtained from unexported field")
   570				}
   571				off += -off & uintptr(typ.align-1)
   572				if typ.size == 0 {
   573					continue
   574				}
   575				addr := add(ptr, off, "typ.size > 0")
   576	
   577				// Convert v to type typ if v is assignable to a variable
   578				// of type t in the language spec.
   579				// See issue 28761.
   580				v = v.assignTo("reflect.MakeFunc", typ, addr)
   581	
   582				// We are writing to stack. No write barrier.
   583				if v.flag&flagIndir != 0 {
   584					memmove(addr, v.ptr, typ.size)
   585				} else {
   586					*(*uintptr)(addr) = uintptr(v.ptr)
   587				}
   588				off += typ.size
   589			}
   590		}
   591	
   592		// Announce that the return values are valid.
   593		// After this point the runtime can depend on the return values being valid.
   594		*retValid = true
   595	
   596		// We have to make sure that the out slice lives at least until
   597		// the runtime knows the return values are valid. Otherwise, the
   598		// return values might not be scanned by anyone during a GC.
   599		// (out would be dead, and the return slots not yet alive.)
   600		runtime.KeepAlive(out)
   601	
   602		// runtime.getArgInfo expects to be able to find ctxt on the
   603		// stack when it finds our caller, makeFuncStub. Make sure it
   604		// doesn't get garbage collected.
   605		runtime.KeepAlive(ctxt)
   606	}
   607	
   608	// methodReceiver returns information about the receiver
   609	// described by v. The Value v may or may not have the
   610	// flagMethod bit set, so the kind cached in v.flag should
   611	// not be used.
   612	// The return value rcvrtype gives the method's actual receiver type.
   613	// The return value t gives the method type signature (without the receiver).
   614	// The return value fn is a pointer to the method code.
   615	func methodReceiver(op string, v Value, methodIndex int) (rcvrtype *rtype, t *funcType, fn unsafe.Pointer) {
   616		i := methodIndex
   617		if v.typ.Kind() == Interface {
   618			tt := (*interfaceType)(unsafe.Pointer(v.typ))
   619			if uint(i) >= uint(len(tt.methods)) {
   620				panic("reflect: internal error: invalid method index")
   621			}
   622			m := &tt.methods[i]
   623			if !tt.nameOff(m.name).isExported() {
   624				panic("reflect: " + op + " of unexported method")
   625			}
   626			iface := (*nonEmptyInterface)(v.ptr)
   627			if iface.itab == nil {
   628				panic("reflect: " + op + " of method on nil interface value")
   629			}
   630			rcvrtype = iface.itab.typ
   631			fn = unsafe.Pointer(&iface.itab.fun[i])
   632			t = (*funcType)(unsafe.Pointer(tt.typeOff(m.typ)))
   633		} else {
   634			rcvrtype = v.typ
   635			ms := v.typ.exportedMethods()
   636			if uint(i) >= uint(len(ms)) {
   637				panic("reflect: internal error: invalid method index")
   638			}
   639			m := ms[i]
   640			if !v.typ.nameOff(m.name).isExported() {
   641				panic("reflect: " + op + " of unexported method")
   642			}
   643			ifn := v.typ.textOff(m.ifn)
   644			fn = unsafe.Pointer(&ifn)
   645			t = (*funcType)(unsafe.Pointer(v.typ.typeOff(m.mtyp)))
   646		}
   647		return
   648	}
   649	
   650	// v is a method receiver. Store at p the word which is used to
   651	// encode that receiver at the start of the argument list.
   652	// Reflect uses the "interface" calling convention for
   653	// methods, which always uses one word to record the receiver.
   654	func storeRcvr(v Value, p unsafe.Pointer) {
   655		t := v.typ
   656		if t.Kind() == Interface {
   657			// the interface data word becomes the receiver word
   658			iface := (*nonEmptyInterface)(v.ptr)
   659			*(*unsafe.Pointer)(p) = iface.word
   660		} else if v.flag&flagIndir != 0 && !ifaceIndir(t) {
   661			*(*unsafe.Pointer)(p) = *(*unsafe.Pointer)(v.ptr)
   662		} else {
   663			*(*unsafe.Pointer)(p) = v.ptr
   664		}
   665	}
   666	
   667	// align returns the result of rounding x up to a multiple of n.
   668	// n must be a power of two.
   669	func align(x, n uintptr) uintptr {
   670		return (x + n - 1) &^ (n - 1)
   671	}
   672	
   673	// callMethod is the call implementation used by a function returned
   674	// by makeMethodValue (used by v.Method(i).Interface()).
   675	// It is a streamlined version of the usual reflect call: the caller has
   676	// already laid out the argument frame for us, so we don't have
   677	// to deal with individual Values for each argument.
   678	// It is in this file so that it can be next to the two similar functions above.
   679	// The remainder of the makeMethodValue implementation is in makefunc.go.
   680	//
   681	// NOTE: This function must be marked as a "wrapper" in the generated code,
   682	// so that the linker can make it work correctly for panic and recover.
   683	// The gc compilers know to do that for the name "reflect.callMethod".
   684	//
   685	// ctxt is the "closure" generated by makeVethodValue.
   686	// frame is a pointer to the arguments to that closure on the stack.
   687	// retValid points to a boolean which should be set when the results
   688	// section of frame is set.
   689	func callMethod(ctxt *methodValue, frame unsafe.Pointer, retValid *bool) {
   690		rcvr := ctxt.rcvr
   691		rcvrtype, t, fn := methodReceiver("call", rcvr, ctxt.method)
   692		frametype, argSize, retOffset, _, framePool := funcLayout(t, rcvrtype)
   693	
   694		// Make a new frame that is one word bigger so we can store the receiver.
   695		// This space is used for both arguments and return values.
   696		scratch := framePool.Get().(unsafe.Pointer)
   697	
   698		// Copy in receiver and rest of args.
   699		storeRcvr(rcvr, scratch)
   700		// Align the first arg. Only on amd64p32 the alignment can be
   701		// larger than ptrSize.
   702		argOffset := uintptr(ptrSize)
   703		if len(t.in()) > 0 {
   704			argOffset = align(argOffset, uintptr(t.in()[0].align))
   705		}
   706		// Avoid constructing out-of-bounds pointers if there are no args.
   707		if argSize-argOffset > 0 {
   708			typedmemmovepartial(frametype, add(scratch, argOffset, "argSize > argOffset"), frame, argOffset, argSize-argOffset)
   709		}
   710	
   711		// Call.
   712		// Call copies the arguments from scratch to the stack, calls fn,
   713		// and then copies the results back into scratch.
   714		call(frametype, fn, scratch, uint32(frametype.size), uint32(retOffset))
   715	
   716		// Copy return values. On amd64p32, the beginning of return values
   717		// is 64-bit aligned, so the caller's frame layout (which doesn't have
   718		// a receiver) is different from the layout of the fn call, which has
   719		// a receiver.
   720		// Ignore any changes to args and just copy return values.
   721		// Avoid constructing out-of-bounds pointers if there are no return values.
   722		if frametype.size-retOffset > 0 {
   723			callerRetOffset := retOffset - argOffset
   724			if runtime.GOARCH == "amd64p32" {
   725				callerRetOffset = align(argSize-argOffset, 8)
   726			}
   727			// This copies to the stack. Write barriers are not needed.
   728			memmove(add(frame, callerRetOffset, "frametype.size > retOffset"),
   729				add(scratch, retOffset, "frametype.size > retOffset"),
   730				frametype.size-retOffset)
   731		}
   732	
   733		// Tell the runtime it can now depend on the return values
   734		// being properly initialized.
   735		*retValid = true
   736	
   737		// Clear the scratch space and put it back in the pool.
   738		// This must happen after the statement above, so that the return
   739		// values will always be scanned by someone.
   740		typedmemclr(frametype, scratch)
   741		framePool.Put(scratch)
   742	
   743		// See the comment in callReflect.
   744		runtime.KeepAlive(ctxt)
   745	}
   746	
   747	// funcName returns the name of f, for use in error messages.
   748	func funcName(f func([]Value) []Value) string {
   749		pc := *(*uintptr)(unsafe.Pointer(&f))
   750		rf := runtime.FuncForPC(pc)
   751		if rf != nil {
   752			return rf.Name()
   753		}
   754		return "closure"
   755	}
   756	
   757	// Cap returns v's capacity.
   758	// It panics if v's Kind is not Array, Chan, or Slice.
   759	func (v Value) Cap() int {
   760		k := v.kind()
   761		switch k {
   762		case Array:
   763			return v.typ.Len()
   764		case Chan:
   765			return chancap(v.pointer())
   766		case Slice:
   767			// Slice is always bigger than a word; assume flagIndir.
   768			return (*sliceHeader)(v.ptr).Cap
   769		}
   770		panic(&ValueError{"reflect.Value.Cap", v.kind()})
   771	}
   772	
   773	// Close closes the channel v.
   774	// It panics if v's Kind is not Chan.
   775	func (v Value) Close() {
   776		v.mustBe(Chan)
   777		v.mustBeExported()
   778		chanclose(v.pointer())
   779	}
   780	
   781	// Complex returns v's underlying value, as a complex128.
   782	// It panics if v's Kind is not Complex64 or Complex128
   783	func (v Value) Complex() complex128 {
   784		k := v.kind()
   785		switch k {
   786		case Complex64:
   787			return complex128(*(*complex64)(v.ptr))
   788		case Complex128:
   789			return *(*complex128)(v.ptr)
   790		}
   791		panic(&ValueError{"reflect.Value.Complex", v.kind()})
   792	}
   793	
   794	// Elem returns the value that the interface v contains
   795	// or that the pointer v points to.
   796	// It panics if v's Kind is not Interface or Ptr.
   797	// It returns the zero Value if v is nil.
   798	func (v Value) Elem() Value {
   799		k := v.kind()
   800		switch k {
   801		case Interface:
   802			var eface interface{}
   803			if v.typ.NumMethod() == 0 {
   804				eface = *(*interface{})(v.ptr)
   805			} else {
   806				eface = (interface{})(*(*interface {
   807					M()
   808				})(v.ptr))
   809			}
   810			x := unpackEface(eface)
   811			if x.flag != 0 {
   812				x.flag |= v.flag.ro()
   813			}
   814			return x
   815		case Ptr:
   816			ptr := v.ptr
   817			if v.flag&flagIndir != 0 {
   818				ptr = *(*unsafe.Pointer)(ptr)
   819			}
   820			// The returned value's address is v's value.
   821			if ptr == nil {
   822				return Value{}
   823			}
   824			tt := (*ptrType)(unsafe.Pointer(v.typ))
   825			typ := tt.elem
   826			fl := v.flag&flagRO | flagIndir | flagAddr
   827			fl |= flag(typ.Kind())
   828			return Value{typ, ptr, fl}
   829		}
   830		panic(&ValueError{"reflect.Value.Elem", v.kind()})
   831	}
   832	
   833	// Field returns the i'th field of the struct v.
   834	// It panics if v's Kind is not Struct or i is out of range.
   835	func (v Value) Field(i int) Value {
   836		if v.kind() != Struct {
   837			panic(&ValueError{"reflect.Value.Field", v.kind()})
   838		}
   839		tt := (*structType)(unsafe.Pointer(v.typ))
   840		if uint(i) >= uint(len(tt.fields)) {
   841			panic("reflect: Field index out of range")
   842		}
   843		field := &tt.fields[i]
   844		typ := field.typ
   845	
   846		// Inherit permission bits from v, but clear flagEmbedRO.
   847		fl := v.flag&(flagStickyRO|flagIndir|flagAddr) | flag(typ.Kind())
   848		// Using an unexported field forces flagRO.
   849		if !field.name.isExported() {
   850			if field.embedded() {
   851				fl |= flagEmbedRO
   852			} else {
   853				fl |= flagStickyRO
   854			}
   855		}
   856		// Either flagIndir is set and v.ptr points at struct,
   857		// or flagIndir is not set and v.ptr is the actual struct data.
   858		// In the former case, we want v.ptr + offset.
   859		// In the latter case, we must have field.offset = 0,
   860		// so v.ptr + field.offset is still the correct address.
   861		ptr := add(v.ptr, field.offset(), "same as non-reflect &v.field")
   862		return Value{typ, ptr, fl}
   863	}
   864	
   865	// FieldByIndex returns the nested field corresponding to index.
   866	// It panics if v's Kind is not struct.
   867	func (v Value) FieldByIndex(index []int) Value {
   868		if len(index) == 1 {
   869			return v.Field(index[0])
   870		}
   871		v.mustBe(Struct)
   872		for i, x := range index {
   873			if i > 0 {
   874				if v.Kind() == Ptr && v.typ.Elem().Kind() == Struct {
   875					if v.IsNil() {
   876						panic("reflect: indirection through nil pointer to embedded struct")
   877					}
   878					v = v.Elem()
   879				}
   880			}
   881			v = v.Field(x)
   882		}
   883		return v
   884	}
   885	
   886	// FieldByName returns the struct field with the given name.
   887	// It returns the zero Value if no field was found.
   888	// It panics if v's Kind is not struct.
   889	func (v Value) FieldByName(name string) Value {
   890		v.mustBe(Struct)
   891		if f, ok := v.typ.FieldByName(name); ok {
   892			return v.FieldByIndex(f.Index)
   893		}
   894		return Value{}
   895	}
   896	
   897	// FieldByNameFunc returns the struct field with a name
   898	// that satisfies the match function.
   899	// It panics if v's Kind is not struct.
   900	// It returns the zero Value if no field was found.
   901	func (v Value) FieldByNameFunc(match func(string) bool) Value {
   902		if f, ok := v.typ.FieldByNameFunc(match); ok {
   903			return v.FieldByIndex(f.Index)
   904		}
   905		return Value{}
   906	}
   907	
   908	// Float returns v's underlying value, as a float64.
   909	// It panics if v's Kind is not Float32 or Float64
   910	func (v Value) Float() float64 {
   911		k := v.kind()
   912		switch k {
   913		case Float32:
   914			return float64(*(*float32)(v.ptr))
   915		case Float64:
   916			return *(*float64)(v.ptr)
   917		}
   918		panic(&ValueError{"reflect.Value.Float", v.kind()})
   919	}
   920	
   921	var uint8Type = TypeOf(uint8(0)).(*rtype)
   922	
   923	// Index returns v's i'th element.
   924	// It panics if v's Kind is not Array, Slice, or String or i is out of range.
   925	func (v Value) Index(i int) Value {
   926		switch v.kind() {
   927		case Array:
   928			tt := (*arrayType)(unsafe.Pointer(v.typ))
   929			if uint(i) >= uint(tt.len) {
   930				panic("reflect: array index out of range")
   931			}
   932			typ := tt.elem
   933			offset := uintptr(i) * typ.size
   934	
   935			// Either flagIndir is set and v.ptr points at array,
   936			// or flagIndir is not set and v.ptr is the actual array data.
   937			// In the former case, we want v.ptr + offset.
   938			// In the latter case, we must be doing Index(0), so offset = 0,
   939			// so v.ptr + offset is still the correct address.
   940			val := add(v.ptr, offset, "same as &v[i], i < tt.len")
   941			fl := v.flag&(flagIndir|flagAddr) | v.flag.ro() | flag(typ.Kind()) // bits same as overall array
   942			return Value{typ, val, fl}
   943	
   944		case Slice:
   945			// Element flag same as Elem of Ptr.
   946			// Addressable, indirect, possibly read-only.
   947			s := (*sliceHeader)(v.ptr)
   948			if uint(i) >= uint(s.Len) {
   949				panic("reflect: slice index out of range")
   950			}
   951			tt := (*sliceType)(unsafe.Pointer(v.typ))
   952			typ := tt.elem
   953			val := arrayAt(s.Data, i, typ.size, "i < s.Len")
   954			fl := flagAddr | flagIndir | v.flag.ro() | flag(typ.Kind())
   955			return Value{typ, val, fl}
   956	
   957		case String:
   958			s := (*stringHeader)(v.ptr)
   959			if uint(i) >= uint(s.Len) {
   960				panic("reflect: string index out of range")
   961			}
   962			p := arrayAt(s.Data, i, 1, "i < s.Len")
   963			fl := v.flag.ro() | flag(Uint8) | flagIndir
   964			return Value{uint8Type, p, fl}
   965		}
   966		panic(&ValueError{"reflect.Value.Index", v.kind()})
   967	}
   968	
   969	// Int returns v's underlying value, as an int64.
   970	// It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64.
   971	func (v Value) Int() int64 {
   972		k := v.kind()
   973		p := v.ptr
   974		switch k {
   975		case Int:
   976			return int64(*(*int)(p))
   977		case Int8:
   978			return int64(*(*int8)(p))
   979		case Int16:
   980			return int64(*(*int16)(p))
   981		case Int32:
   982			return int64(*(*int32)(p))
   983		case Int64:
   984			return *(*int64)(p)
   985		}
   986		panic(&ValueError{"reflect.Value.Int", v.kind()})
   987	}
   988	
   989	// CanInterface reports whether Interface can be used without panicking.
   990	func (v Value) CanInterface() bool {
   991		if v.flag == 0 {
   992			panic(&ValueError{"reflect.Value.CanInterface", Invalid})
   993		}
   994		return v.flag&flagRO == 0
   995	}
   996	
   997	// Interface returns v's current value as an interface{}.
   998	// It is equivalent to:
   999	//	var i interface{} = (v's underlying value)
  1000	// It panics if the Value was obtained by accessing
  1001	// unexported struct fields.
  1002	func (v Value) Interface() (i interface{}) {
  1003		return valueInterface(v, true)
  1004	}
  1005	
  1006	func valueInterface(v Value, safe bool) interface{} {
  1007		if v.flag == 0 {
  1008			panic(&ValueError{"reflect.Value.Interface", Invalid})
  1009		}
  1010		if safe && v.flag&flagRO != 0 {
  1011			// Do not allow access to unexported values via Interface,
  1012			// because they might be pointers that should not be
  1013			// writable or methods or function that should not be callable.
  1014			panic("reflect.Value.Interface: cannot return value obtained from unexported field or method")
  1015		}
  1016		if v.flag&flagMethod != 0 {
  1017			v = makeMethodValue("Interface", v)
  1018		}
  1019	
  1020		if v.kind() == Interface {
  1021			// Special case: return the element inside the interface.
  1022			// Empty interface has one layout, all interfaces with
  1023			// methods have a second layout.
  1024			if v.NumMethod() == 0 {
  1025				return *(*interface{})(v.ptr)
  1026			}
  1027			return *(*interface {
  1028				M()
  1029			})(v.ptr)
  1030		}
  1031	
  1032		// TODO: pass safe to packEface so we don't need to copy if safe==true?
  1033		return packEface(v)
  1034	}
  1035	
  1036	// InterfaceData returns the interface v's value as a uintptr pair.
  1037	// It panics if v's Kind is not Interface.
  1038	func (v Value) InterfaceData() [2]uintptr {
  1039		// TODO: deprecate this
  1040		v.mustBe(Interface)
  1041		// We treat this as a read operation, so we allow
  1042		// it even for unexported data, because the caller
  1043		// has to import "unsafe" to turn it into something
  1044		// that can be abused.
  1045		// Interface value is always bigger than a word; assume flagIndir.
  1046		return *(*[2]uintptr)(v.ptr)
  1047	}
  1048	
  1049	// IsNil reports whether its argument v is nil. The argument must be
  1050	// a chan, func, interface, map, pointer, or slice value; if it is
  1051	// not, IsNil panics. Note that IsNil is not always equivalent to a
  1052	// regular comparison with nil in Go. For example, if v was created
  1053	// by calling ValueOf with an uninitialized interface variable i,
  1054	// i==nil will be true but v.IsNil will panic as v will be the zero
  1055	// Value.
  1056	func (v Value) IsNil() bool {
  1057		k := v.kind()
  1058		switch k {
  1059		case Chan, Func, Map, Ptr, UnsafePointer:
  1060			if v.flag&flagMethod != 0 {
  1061				return false
  1062			}
  1063			ptr := v.ptr
  1064			if v.flag&flagIndir != 0 {
  1065				ptr = *(*unsafe.Pointer)(ptr)
  1066			}
  1067			return ptr == nil
  1068		case Interface, Slice:
  1069			// Both interface and slice are nil if first word is 0.
  1070			// Both are always bigger than a word; assume flagIndir.
  1071			return *(*unsafe.Pointer)(v.ptr) == nil
  1072		}
  1073		panic(&ValueError{"reflect.Value.IsNil", v.kind()})
  1074	}
  1075	
  1076	// IsValid reports whether v represents a value.
  1077	// It returns false if v is the zero Value.
  1078	// If IsValid returns false, all other methods except String panic.
  1079	// Most functions and methods never return an invalid value.
  1080	// If one does, its documentation states the conditions explicitly.
  1081	func (v Value) IsValid() bool {
  1082		return v.flag != 0
  1083	}
  1084	
  1085	// IsZero reports whether v is the zero value for its type.
  1086	// It panics if the argument is invalid.
  1087	func (v Value) IsZero() bool {
  1088		switch v.kind() {
  1089		case Bool:
  1090			return !v.Bool()
  1091		case Int, Int8, Int16, Int32, Int64:
  1092			return v.Int() == 0
  1093		case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
  1094			return v.Uint() == 0
  1095		case Float32, Float64:
  1096			return math.Float64bits(v.Float()) == 0
  1097		case Complex64, Complex128:
  1098			c := v.Complex()
  1099			return math.Float64bits(real(c)) == 0 && math.Float64bits(imag(c)) == 0
  1100		case Array:
  1101			for i := 0; i < v.Len(); i++ {
  1102				if !v.Index(i).IsZero() {
  1103					return false
  1104				}
  1105			}
  1106			return true
  1107		case Chan, Func, Interface, Map, Ptr, Slice, UnsafePointer:
  1108			return v.IsNil()
  1109		case String:
  1110			return v.Len() == 0
  1111		case Struct:
  1112			for i := 0; i < v.NumField(); i++ {
  1113				if !v.Field(i).IsZero() {
  1114					return false
  1115				}
  1116			}
  1117			return true
  1118		default:
  1119			// This should never happens, but will act as a safeguard for
  1120			// later, as a default value doesn't makes sense here.
  1121			panic(&ValueError{"reflect.Value.IsZero", v.Kind()})
  1122		}
  1123	}
  1124	
  1125	// Kind returns v's Kind.
  1126	// If v is the zero Value (IsValid returns false), Kind returns Invalid.
  1127	func (v Value) Kind() Kind {
  1128		return v.kind()
  1129	}
  1130	
  1131	// Len returns v's length.
  1132	// It panics if v's Kind is not Array, Chan, Map, Slice, or String.
  1133	func (v Value) Len() int {
  1134		k := v.kind()
  1135		switch k {
  1136		case Array:
  1137			tt := (*arrayType)(unsafe.Pointer(v.typ))
  1138			return int(tt.len)
  1139		case Chan:
  1140			return chanlen(v.pointer())
  1141		case Map:
  1142			return maplen(v.pointer())
  1143		case Slice:
  1144			// Slice is bigger than a word; assume flagIndir.
  1145			return (*sliceHeader)(v.ptr).Len
  1146		case String:
  1147			// String is bigger than a word; assume flagIndir.
  1148			return (*stringHeader)(v.ptr).Len
  1149		}
  1150		panic(&ValueError{"reflect.Value.Len", v.kind()})
  1151	}
  1152	
  1153	// MapIndex returns the value associated with key in the map v.
  1154	// It panics if v's Kind is not Map.
  1155	// It returns the zero Value if key is not found in the map or if v represents a nil map.
  1156	// As in Go, the key's value must be assignable to the map's key type.
  1157	func (v Value) MapIndex(key Value) Value {
  1158		v.mustBe(Map)
  1159		tt := (*mapType)(unsafe.Pointer(v.typ))
  1160	
  1161		// Do not require key to be exported, so that DeepEqual
  1162		// and other programs can use all the keys returned by
  1163		// MapKeys as arguments to MapIndex. If either the map
  1164		// or the key is unexported, though, the result will be
  1165		// considered unexported. This is consistent with the
  1166		// behavior for structs, which allow read but not write
  1167		// of unexported fields.
  1168		key = key.assignTo("reflect.Value.MapIndex", tt.key, nil)
  1169	
  1170		var k unsafe.Pointer
  1171		if key.flag&flagIndir != 0 {
  1172			k = key.ptr
  1173		} else {
  1174			k = unsafe.Pointer(&key.ptr)
  1175		}
  1176		e := mapaccess(v.typ, v.pointer(), k)
  1177		if e == nil {
  1178			return Value{}
  1179		}
  1180		typ := tt.elem
  1181		fl := (v.flag | key.flag).ro()
  1182		fl |= flag(typ.Kind())
  1183		return copyVal(typ, fl, e)
  1184	}
  1185	
  1186	// MapKeys returns a slice containing all the keys present in the map,
  1187	// in unspecified order.
  1188	// It panics if v's Kind is not Map.
  1189	// It returns an empty slice if v represents a nil map.
  1190	func (v Value) MapKeys() []Value {
  1191		v.mustBe(Map)
  1192		tt := (*mapType)(unsafe.Pointer(v.typ))
  1193		keyType := tt.key
  1194	
  1195		fl := v.flag.ro() | flag(keyType.Kind())
  1196	
  1197		m := v.pointer()
  1198		mlen := int(0)
  1199		if m != nil {
  1200			mlen = maplen(m)
  1201		}
  1202		it := mapiterinit(v.typ, m)
  1203		a := make([]Value, mlen)
  1204		var i int
  1205		for i = 0; i < len(a); i++ {
  1206			key := mapiterkey(it)
  1207			if key == nil {
  1208				// Someone deleted an entry from the map since we
  1209				// called maplen above. It's a data race, but nothing
  1210				// we can do about it.
  1211				break
  1212			}
  1213			a[i] = copyVal(keyType, fl, key)
  1214			mapiternext(it)
  1215		}
  1216		return a[:i]
  1217	}
  1218	
  1219	// A MapIter is an iterator for ranging over a map.
  1220	// See Value.MapRange.
  1221	type MapIter struct {
  1222		m  Value
  1223		it unsafe.Pointer
  1224	}
  1225	
  1226	// Key returns the key of the iterator's current map entry.
  1227	func (it *MapIter) Key() Value {
  1228		if it.it == nil {
  1229			panic("MapIter.Key called before Next")
  1230		}
  1231		if mapiterkey(it.it) == nil {
  1232			panic("MapIter.Key called on exhausted iterator")
  1233		}
  1234	
  1235		t := (*mapType)(unsafe.Pointer(it.m.typ))
  1236		ktype := t.key
  1237		return copyVal(ktype, it.m.flag.ro()|flag(ktype.Kind()), mapiterkey(it.it))
  1238	}
  1239	
  1240	// Value returns the value of the iterator's current map entry.
  1241	func (it *MapIter) Value() Value {
  1242		if it.it == nil {
  1243			panic("MapIter.Value called before Next")
  1244		}
  1245		if mapiterkey(it.it) == nil {
  1246			panic("MapIter.Value called on exhausted iterator")
  1247		}
  1248	
  1249		t := (*mapType)(unsafe.Pointer(it.m.typ))
  1250		vtype := t.elem
  1251		return copyVal(vtype, it.m.flag.ro()|flag(vtype.Kind()), mapiterelem(it.it))
  1252	}
  1253	
  1254	// Next advances the map iterator and reports whether there is another
  1255	// entry. It returns false when the iterator is exhausted; subsequent
  1256	// calls to Key, Value, or Next will panic.
  1257	func (it *MapIter) Next() bool {
  1258		if it.it == nil {
  1259			it.it = mapiterinit(it.m.typ, it.m.pointer())
  1260		} else {
  1261			if mapiterkey(it.it) == nil {
  1262				panic("MapIter.Next called on exhausted iterator")
  1263			}
  1264			mapiternext(it.it)
  1265		}
  1266		return mapiterkey(it.it) != nil
  1267	}
  1268	
  1269	// MapRange returns a range iterator for a map.
  1270	// It panics if v's Kind is not Map.
  1271	//
  1272	// Call Next to advance the iterator, and Key/Value to access each entry.
  1273	// Next returns false when the iterator is exhausted.
  1274	// MapRange follows the same iteration semantics as a range statement.
  1275	//
  1276	// Example:
  1277	//
  1278	//	iter := reflect.ValueOf(m).MapRange()
  1279	// 	for iter.Next() {
  1280	//		k := iter.Key()
  1281	//		v := iter.Value()
  1282	//		...
  1283	//	}
  1284	//
  1285	func (v Value) MapRange() *MapIter {
  1286		v.mustBe(Map)
  1287		return &MapIter{m: v}
  1288	}
  1289	
  1290	// copyVal returns a Value containing the map key or value at ptr,
  1291	// allocating a new variable as needed.
  1292	func copyVal(typ *rtype, fl flag, ptr unsafe.Pointer) Value {
  1293		if ifaceIndir(typ) {
  1294			// Copy result so future changes to the map
  1295			// won't change the underlying value.
  1296			c := unsafe_New(typ)
  1297			typedmemmove(typ, c, ptr)
  1298			return Value{typ, c, fl | flagIndir}
  1299		}
  1300		return Value{typ, *(*unsafe.Pointer)(ptr), fl}
  1301	}
  1302	
  1303	// Method returns a function value corresponding to v's i'th method.
  1304	// The arguments to a Call on the returned function should not include
  1305	// a receiver; the returned function will always use v as the receiver.
  1306	// Method panics if i is out of range or if v is a nil interface value.
  1307	func (v Value) Method(i int) Value {
  1308		if v.typ == nil {
  1309			panic(&ValueError{"reflect.Value.Method", Invalid})
  1310		}
  1311		if v.flag&flagMethod != 0 || uint(i) >= uint(v.typ.NumMethod()) {
  1312			panic("reflect: Method index out of range")
  1313		}
  1314		if v.typ.Kind() == Interface && v.IsNil() {
  1315			panic("reflect: Method on nil interface value")
  1316		}
  1317		fl := v.flag & (flagStickyRO | flagIndir) // Clear flagEmbedRO
  1318		fl |= flag(Func)
  1319		fl |= flag(i)<<flagMethodShift | flagMethod
  1320		return Value{v.typ, v.ptr, fl}
  1321	}
  1322	
  1323	// NumMethod returns the number of exported methods in the value's method set.
  1324	func (v Value) NumMethod() int {
  1325		if v.typ == nil {
  1326			panic(&ValueError{"reflect.Value.NumMethod", Invalid})
  1327		}
  1328		if v.flag&flagMethod != 0 {
  1329			return 0
  1330		}
  1331		return v.typ.NumMethod()
  1332	}
  1333	
  1334	// MethodByName returns a function value corresponding to the method
  1335	// of v with the given name.
  1336	// The arguments to a Call on the returned function should not include
  1337	// a receiver; the returned function will always use v as the receiver.
  1338	// It returns the zero Value if no method was found.
  1339	func (v Value) MethodByName(name string) Value {
  1340		if v.typ == nil {
  1341			panic(&ValueError{"reflect.Value.MethodByName", Invalid})
  1342		}
  1343		if v.flag&flagMethod != 0 {
  1344			return Value{}
  1345		}
  1346		m, ok := v.typ.MethodByName(name)
  1347		if !ok {
  1348			return Value{}
  1349		}
  1350		return v.Method(m.Index)
  1351	}
  1352	
  1353	// NumField returns the number of fields in the struct v.
  1354	// It panics if v's Kind is not Struct.
  1355	func (v Value) NumField() int {
  1356		v.mustBe(Struct)
  1357		tt := (*structType)(unsafe.Pointer(v.typ))
  1358		return len(tt.fields)
  1359	}
  1360	
  1361	// OverflowComplex reports whether the complex128 x cannot be represented by v's type.
  1362	// It panics if v's Kind is not Complex64 or Complex128.
  1363	func (v Value) OverflowComplex(x complex128) bool {
  1364		k := v.kind()
  1365		switch k {
  1366		case Complex64:
  1367			return overflowFloat32(real(x)) || overflowFloat32(imag(x))
  1368		case Complex128:
  1369			return false
  1370		}
  1371		panic(&ValueError{"reflect.Value.OverflowComplex", v.kind()})
  1372	}
  1373	
  1374	// OverflowFloat reports whether the float64 x cannot be represented by v's type.
  1375	// It panics if v's Kind is not Float32 or Float64.
  1376	func (v Value) OverflowFloat(x float64) bool {
  1377		k := v.kind()
  1378		switch k {
  1379		case Float32:
  1380			return overflowFloat32(x)
  1381		case Float64:
  1382			return false
  1383		}
  1384		panic(&ValueError{"reflect.Value.OverflowFloat", v.kind()})
  1385	}
  1386	
  1387	func overflowFloat32(x float64) bool {
  1388		if x < 0 {
  1389			x = -x
  1390		}
  1391		return math.MaxFloat32 < x && x <= math.MaxFloat64
  1392	}
  1393	
  1394	// OverflowInt reports whether the int64 x cannot be represented by v's type.
  1395	// It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64.
  1396	func (v Value) OverflowInt(x int64) bool {
  1397		k := v.kind()
  1398		switch k {
  1399		case Int, Int8, Int16, Int32, Int64:
  1400			bitSize := v.typ.size * 8
  1401			trunc := (x << (64 - bitSize)) >> (64 - bitSize)
  1402			return x != trunc
  1403		}
  1404		panic(&ValueError{"reflect.Value.OverflowInt", v.kind()})
  1405	}
  1406	
  1407	// OverflowUint reports whether the uint64 x cannot be represented by v's type.
  1408	// It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64.
  1409	func (v Value) OverflowUint(x uint64) bool {
  1410		k := v.kind()
  1411		switch k {
  1412		case Uint, Uintptr, Uint8, Uint16, Uint32, Uint64:
  1413			bitSize := v.typ.size * 8
  1414			trunc := (x << (64 - bitSize)) >> (64 - bitSize)
  1415			return x != trunc
  1416		}
  1417		panic(&ValueError{"reflect.Value.OverflowUint", v.kind()})
  1418	}
  1419	
  1420	// Pointer returns v's value as a uintptr.
  1421	// It returns uintptr instead of unsafe.Pointer so that
  1422	// code using reflect cannot obtain unsafe.Pointers
  1423	// without importing the unsafe package explicitly.
  1424	// It panics if v's Kind is not Chan, Func, Map, Ptr, Slice, or UnsafePointer.
  1425	//
  1426	// If v's Kind is Func, the returned pointer is an underlying
  1427	// code pointer, but not necessarily enough to identify a
  1428	// single function uniquely. The only guarantee is that the
  1429	// result is zero if and only if v is a nil func Value.
  1430	//
  1431	// If v's Kind is Slice, the returned pointer is to the first
  1432	// element of the slice. If the slice is nil the returned value
  1433	// is 0.  If the slice is empty but non-nil the return value is non-zero.
  1434	func (v Value) Pointer() uintptr {
  1435		// TODO: deprecate
  1436		k := v.kind()
  1437		switch k {
  1438		case Chan, Map, Ptr, UnsafePointer:
  1439			return uintptr(v.pointer())
  1440		case Func:
  1441			if v.flag&flagMethod != 0 {
  1442				// As the doc comment says, the returned pointer is an
  1443				// underlying code pointer but not necessarily enough to
  1444				// identify a single function uniquely. All method expressions
  1445				// created via reflect have the same underlying code pointer,
  1446				// so their Pointers are equal. The function used here must
  1447				// match the one used in makeMethodValue.
  1448				f := methodValueCall
  1449				return **(**uintptr)(unsafe.Pointer(&f))
  1450			}
  1451			p := v.pointer()
  1452			// Non-nil func value points at data block.
  1453			// First word of data block is actual code.
  1454			if p != nil {
  1455				p = *(*unsafe.Pointer)(p)
  1456			}
  1457			return uintptr(p)
  1458	
  1459		case Slice:
  1460			return (*SliceHeader)(v.ptr).Data
  1461		}
  1462		panic(&ValueError{"reflect.Value.Pointer", v.kind()})
  1463	}
  1464	
  1465	// Recv receives and returns a value from the channel v.
  1466	// It panics if v's Kind is not Chan.
  1467	// The receive blocks until a value is ready.
  1468	// The boolean value ok is true if the value x corresponds to a send
  1469	// on the channel, false if it is a zero value received because the channel is closed.
  1470	func (v Value) Recv() (x Value, ok bool) {
  1471		v.mustBe(Chan)
  1472		v.mustBeExported()
  1473		return v.recv(false)
  1474	}
  1475	
  1476	// internal recv, possibly non-blocking (nb).
  1477	// v is known to be a channel.
  1478	func (v Value) recv(nb bool) (val Value, ok bool) {
  1479		tt := (*chanType)(unsafe.Pointer(v.typ))
  1480		if ChanDir(tt.dir)&RecvDir == 0 {
  1481			panic("reflect: recv on send-only channel")
  1482		}
  1483		t := tt.elem
  1484		val = Value{t, nil, flag(t.Kind())}
  1485		var p unsafe.Pointer
  1486		if ifaceIndir(t) {
  1487			p = unsafe_New(t)
  1488			val.ptr = p
  1489			val.flag |= flagIndir
  1490		} else {
  1491			p = unsafe.Pointer(&val.ptr)
  1492		}
  1493		selected, ok := chanrecv(v.pointer(), nb, p)
  1494		if !selected {
  1495			val = Value{}
  1496		}
  1497		return
  1498	}
  1499	
  1500	// Send sends x on the channel v.
  1501	// It panics if v's kind is not Chan or if x's type is not the same type as v's element type.
  1502	// As in Go, x's value must be assignable to the channel's element type.
  1503	func (v Value) Send(x Value) {
  1504		v.mustBe(Chan)
  1505		v.mustBeExported()
  1506		v.send(x, false)
  1507	}
  1508	
  1509	// internal send, possibly non-blocking.
  1510	// v is known to be a channel.
  1511	func (v Value) send(x Value, nb bool) (selected bool) {
  1512		tt := (*chanType)(unsafe.Pointer(v.typ))
  1513		if ChanDir(tt.dir)&SendDir == 0 {
  1514			panic("reflect: send on recv-only channel")
  1515		}
  1516		x.mustBeExported()
  1517		x = x.assignTo("reflect.Value.Send", tt.elem, nil)
  1518		var p unsafe.Pointer
  1519		if x.flag&flagIndir != 0 {
  1520			p = x.ptr
  1521		} else {
  1522			p = unsafe.Pointer(&x.ptr)
  1523		}
  1524		return chansend(v.pointer(), p, nb)
  1525	}
  1526	
  1527	// Set assigns x to the value v.
  1528	// It panics if CanSet returns false.
  1529	// As in Go, x's value must be assignable to v's type.
  1530	func (v Value) Set(x Value) {
  1531		v.mustBeAssignable()
  1532		x.mustBeExported() // do not let unexported x leak
  1533		var target unsafe.Pointer
  1534		if v.kind() == Interface {
  1535			target = v.ptr
  1536		}
  1537		x = x.assignTo("reflect.Set", v.typ, target)
  1538		if x.flag&flagIndir != 0 {
  1539			typedmemmove(v.typ, v.ptr, x.ptr)
  1540		} else {
  1541			*(*unsafe.Pointer)(v.ptr) = x.ptr
  1542		}
  1543	}
  1544	
  1545	// SetBool sets v's underlying value.
  1546	// It panics if v's Kind is not Bool or if CanSet() is false.
  1547	func (v Value) SetBool(x bool) {
  1548		v.mustBeAssignable()
  1549		v.mustBe(Bool)
  1550		*(*bool)(v.ptr) = x
  1551	}
  1552	
  1553	// SetBytes sets v's underlying value.
  1554	// It panics if v's underlying value is not a slice of bytes.
  1555	func (v Value) SetBytes(x []byte) {
  1556		v.mustBeAssignable()
  1557		v.mustBe(Slice)
  1558		if v.typ.Elem().Kind() != Uint8 {
  1559			panic("reflect.Value.SetBytes of non-byte slice")
  1560		}
  1561		*(*[]byte)(v.ptr) = x
  1562	}
  1563	
  1564	// setRunes sets v's underlying value.
  1565	// It panics if v's underlying value is not a slice of runes (int32s).
  1566	func (v Value) setRunes(x []rune) {
  1567		v.mustBeAssignable()
  1568		v.mustBe(Slice)
  1569		if v.typ.Elem().Kind() != Int32 {
  1570			panic("reflect.Value.setRunes of non-rune slice")
  1571		}
  1572		*(*[]rune)(v.ptr) = x
  1573	}
  1574	
  1575	// SetComplex sets v's underlying value to x.
  1576	// It panics if v's Kind is not Complex64 or Complex128, or if CanSet() is false.
  1577	func (v Value) SetComplex(x complex128) {
  1578		v.mustBeAssignable()
  1579		switch k := v.kind(); k {
  1580		default:
  1581			panic(&ValueError{"reflect.Value.SetComplex", v.kind()})
  1582		case Complex64:
  1583			*(*complex64)(v.ptr) = complex64(x)
  1584		case Complex128:
  1585			*(*complex128)(v.ptr) = x
  1586		}
  1587	}
  1588	
  1589	// SetFloat sets v's underlying value to x.
  1590	// It panics if v's Kind is not Float32 or Float64, or if CanSet() is false.
  1591	func (v Value) SetFloat(x float64) {
  1592		v.mustBeAssignable()
  1593		switch k := v.kind(); k {
  1594		default:
  1595			panic(&ValueError{"reflect.Value.SetFloat", v.kind()})
  1596		case Float32:
  1597			*(*float32)(v.ptr) = float32(x)
  1598		case Float64:
  1599			*(*float64)(v.ptr) = x
  1600		}
  1601	}
  1602	
  1603	// SetInt sets v's underlying value to x.
  1604	// It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64, or if CanSet() is false.
  1605	func (v Value) SetInt(x int64) {
  1606		v.mustBeAssignable()
  1607		switch k := v.kind(); k {
  1608		default:
  1609			panic(&ValueError{"reflect.Value.SetInt", v.kind()})
  1610		case Int:
  1611			*(*int)(v.ptr) = int(x)
  1612		case Int8:
  1613			*(*int8)(v.ptr) = int8(x)
  1614		case Int16:
  1615			*(*int16)(v.ptr) = int16(x)
  1616		case Int32:
  1617			*(*int32)(v.ptr) = int32(x)
  1618		case Int64:
  1619			*(*int64)(v.ptr) = x
  1620		}
  1621	}
  1622	
  1623	// SetLen sets v's length to n.
  1624	// It panics if v's Kind is not Slice or if n is negative or
  1625	// greater than the capacity of the slice.
  1626	func (v Value) SetLen(n int) {
  1627		v.mustBeAssignable()
  1628		v.mustBe(Slice)
  1629		s := (*sliceHeader)(v.ptr)
  1630		if uint(n) > uint(s.Cap) {
  1631			panic("reflect: slice length out of range in SetLen")
  1632		}
  1633		s.Len = n
  1634	}
  1635	
  1636	// SetCap sets v's capacity to n.
  1637	// It panics if v's Kind is not Slice or if n is smaller than the length or
  1638	// greater than the capacity of the slice.
  1639	func (v Value) SetCap(n int) {
  1640		v.mustBeAssignable()
  1641		v.mustBe(Slice)
  1642		s := (*sliceHeader)(v.ptr)
  1643		if n < s.Len || n > s.Cap {
  1644			panic("reflect: slice capacity out of range in SetCap")
  1645		}
  1646		s.Cap = n
  1647	}
  1648	
  1649	// SetMapIndex sets the element associated with key in the map v to elem.
  1650	// It panics if v's Kind is not Map.
  1651	// If elem is the zero Value, SetMapIndex deletes the key from the map.
  1652	// Otherwise if v holds a nil map, SetMapIndex will panic.
  1653	// As in Go, key's elem must be assignable to the map's key type,
  1654	// and elem's value must be assignable to the map's elem type.
  1655	func (v Value) SetMapIndex(key, elem Value) {
  1656		v.mustBe(Map)
  1657		v.mustBeExported()
  1658		key.mustBeExported()
  1659		tt := (*mapType)(unsafe.Pointer(v.typ))
  1660		key = key.assignTo("reflect.Value.SetMapIndex", tt.key, nil)
  1661		var k unsafe.Pointer
  1662		if key.flag&flagIndir != 0 {
  1663			k = key.ptr
  1664		} else {
  1665			k = unsafe.Pointer(&key.ptr)
  1666		}
  1667		if elem.typ == nil {
  1668			mapdelete(v.typ, v.pointer(), k)
  1669			return
  1670		}
  1671		elem.mustBeExported()
  1672		elem = elem.assignTo("reflect.Value.SetMapIndex", tt.elem, nil)
  1673		var e unsafe.Pointer
  1674		if elem.flag&flagIndir != 0 {
  1675			e = elem.ptr
  1676		} else {
  1677			e = unsafe.Pointer(&elem.ptr)
  1678		}
  1679		mapassign(v.typ, v.pointer(), k, e)
  1680	}
  1681	
  1682	// SetUint sets v's underlying value to x.
  1683	// It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64, or if CanSet() is false.
  1684	func (v Value) SetUint(x uint64) {
  1685		v.mustBeAssignable()
  1686		switch k := v.kind(); k {
  1687		default:
  1688			panic(&ValueError{"reflect.Value.SetUint", v.kind()})
  1689		case Uint:
  1690			*(*uint)(v.ptr) = uint(x)
  1691		case Uint8:
  1692			*(*uint8)(v.ptr) = uint8(x)
  1693		case Uint16:
  1694			*(*uint16)(v.ptr) = uint16(x)
  1695		case Uint32:
  1696			*(*uint32)(v.ptr) = uint32(x)
  1697		case Uint64:
  1698			*(*uint64)(v.ptr) = x
  1699		case Uintptr:
  1700			*(*uintptr)(v.ptr) = uintptr(x)
  1701		}
  1702	}
  1703	
  1704	// SetPointer sets the unsafe.Pointer value v to x.
  1705	// It panics if v's Kind is not UnsafePointer.
  1706	func (v Value) SetPointer(x unsafe.Pointer) {
  1707		v.mustBeAssignable()
  1708		v.mustBe(UnsafePointer)
  1709		*(*unsafe.Pointer)(v.ptr) = x
  1710	}
  1711	
  1712	// SetString sets v's underlying value to x.
  1713	// It panics if v's Kind is not String or if CanSet() is false.
  1714	func (v Value) SetString(x string) {
  1715		v.mustBeAssignable()
  1716		v.mustBe(String)
  1717		*(*string)(v.ptr) = x
  1718	}
  1719	
  1720	// Slice returns v[i:j].
  1721	// It panics if v's Kind is not Array, Slice or String, or if v is an unaddressable array,
  1722	// or if the indexes are out of bounds.
  1723	func (v Value) Slice(i, j int) Value {
  1724		var (
  1725			cap  int
  1726			typ  *sliceType
  1727			base unsafe.Pointer
  1728		)
  1729		switch kind := v.kind(); kind {
  1730		default:
  1731			panic(&ValueError{"reflect.Value.Slice", v.kind()})
  1732	
  1733		case Array:
  1734			if v.flag&flagAddr == 0 {
  1735				panic("reflect.Value.Slice: slice of unaddressable array")
  1736			}
  1737			tt := (*arrayType)(unsafe.Pointer(v.typ))
  1738			cap = int(tt.len)
  1739			typ = (*sliceType)(unsafe.Pointer(tt.slice))
  1740			base = v.ptr
  1741	
  1742		case Slice:
  1743			typ = (*sliceType)(unsafe.Pointer(v.typ))
  1744			s := (*sliceHeader)(v.ptr)
  1745			base = s.Data
  1746			cap = s.Cap
  1747	
  1748		case String:
  1749			s := (*stringHeader)(v.ptr)
  1750			if i < 0 || j < i || j > s.Len {
  1751				panic("reflect.Value.Slice: string slice index out of bounds")
  1752			}
  1753			var t stringHeader
  1754			if i < s.Len {
  1755				t = stringHeader{arrayAt(s.Data, i, 1, "i < s.Len"), j - i}
  1756			}
  1757			return Value{v.typ, unsafe.Pointer(&t), v.flag}
  1758		}
  1759	
  1760		if i < 0 || j < i || j > cap {
  1761			panic("reflect.Value.Slice: slice index out of bounds")
  1762		}
  1763	
  1764		// Declare slice so that gc can see the base pointer in it.
  1765		var x []unsafe.Pointer
  1766	
  1767		// Reinterpret as *sliceHeader to edit.
  1768		s := (*sliceHeader)(unsafe.Pointer(&x))
  1769		s.Len = j - i
  1770		s.Cap = cap - i
  1771		if cap-i > 0 {
  1772			s.Data = arrayAt(base, i, typ.elem.Size(), "i < cap")
  1773		} else {
  1774			// do not advance pointer, to avoid pointing beyond end of slice
  1775			s.Data = base
  1776		}
  1777	
  1778		fl := v.flag.ro() | flagIndir | flag(Slice)
  1779		return Value{typ.common(), unsafe.Pointer(&x), fl}
  1780	}
  1781	
  1782	// Slice3 is the 3-index form of the slice operation: it returns v[i:j:k].
  1783	// It panics if v's Kind is not Array or Slice, or if v is an unaddressable array,
  1784	// or if the indexes are out of bounds.
  1785	func (v Value) Slice3(i, j, k int) Value {
  1786		var (
  1787			cap  int
  1788			typ  *sliceType
  1789			base unsafe.Pointer
  1790		)
  1791		switch kind := v.kind(); kind {
  1792		default:
  1793			panic(&ValueError{"reflect.Value.Slice3", v.kind()})
  1794	
  1795		case Array:
  1796			if v.flag&flagAddr == 0 {
  1797				panic("reflect.Value.Slice3: slice of unaddressable array")
  1798			}
  1799			tt := (*arrayType)(unsafe.Pointer(v.typ))
  1800			cap = int(tt.len)
  1801			typ = (*sliceType)(unsafe.Pointer(tt.slice))
  1802			base = v.ptr
  1803	
  1804		case Slice:
  1805			typ = (*sliceType)(unsafe.Pointer(v.typ))
  1806			s := (*sliceHeader)(v.ptr)
  1807			base = s.Data
  1808			cap = s.Cap
  1809		}
  1810	
  1811		if i < 0 || j < i || k < j || k > cap {
  1812			panic("reflect.Value.Slice3: slice index out of bounds")
  1813		}
  1814	
  1815		// Declare slice so that the garbage collector
  1816		// can see the base pointer in it.
  1817		var x []unsafe.Pointer
  1818	
  1819		// Reinterpret as *sliceHeader to edit.
  1820		s := (*sliceHeader)(unsafe.Pointer(&x))
  1821		s.Len = j - i
  1822		s.Cap = k - i
  1823		if k-i > 0 {
  1824			s.Data = arrayAt(base, i, typ.elem.Size(), "i < k <= cap")
  1825		} else {
  1826			// do not advance pointer, to avoid pointing beyond end of slice
  1827			s.Data = base
  1828		}
  1829	
  1830		fl := v.flag.ro() | flagIndir | flag(Slice)
  1831		return Value{typ.common(), unsafe.Pointer(&x), fl}
  1832	}
  1833	
  1834	// String returns the string v's underlying value, as a string.
  1835	// String is a special case because of Go's String method convention.
  1836	// Unlike the other getters, it does not panic if v's Kind is not String.
  1837	// Instead, it returns a string of the form "<T value>" where T is v's type.
  1838	// The fmt package treats Values specially. It does not call their String
  1839	// method implicitly but instead prints the concrete values they hold.
  1840	func (v Value) String() string {
  1841		switch k := v.kind(); k {
  1842		case Invalid:
  1843			return "<invalid Value>"
  1844		case String:
  1845			return *(*string)(v.ptr)
  1846		}
  1847		// If you call String on a reflect.Value of other type, it's better to
  1848		// print something than to panic. Useful in debugging.
  1849		return "<" + v.Type().String() + " Value>"
  1850	}
  1851	
  1852	// TryRecv attempts to receive a value from the channel v but will not block.
  1853	// It panics if v's Kind is not Chan.
  1854	// If the receive delivers a value, x is the transferred value and ok is true.
  1855	// If the receive cannot finish without blocking, x is the zero Value and ok is false.
  1856	// If the channel is closed, x is the zero value for the channel's element type and ok is false.
  1857	func (v Value) TryRecv() (x Value, ok bool) {
  1858		v.mustBe(Chan)
  1859		v.mustBeExported()
  1860		return v.recv(true)
  1861	}
  1862	
  1863	// TrySend attempts to send x on the channel v but will not block.
  1864	// It panics if v's Kind is not Chan.
  1865	// It reports whether the value was sent.
  1866	// As in Go, x's value must be assignable to the channel's element type.
  1867	func (v Value) TrySend(x Value) bool {
  1868		v.mustBe(Chan)
  1869		v.mustBeExported()
  1870		return v.send(x, true)
  1871	}
  1872	
  1873	// Type returns v's type.
  1874	func (v Value) Type() Type {
  1875		f := v.flag
  1876		if f == 0 {
  1877			panic(&ValueError{"reflect.Value.Type", Invalid})
  1878		}
  1879		if f&flagMethod == 0 {
  1880			// Easy case
  1881			return v.typ
  1882		}
  1883	
  1884		// Method value.
  1885		// v.typ describes the receiver, not the method type.
  1886		i := int(v.flag) >> flagMethodShift
  1887		if v.typ.Kind() == Interface {
  1888			// Method on interface.
  1889			tt := (*interfaceType)(unsafe.Pointer(v.typ))
  1890			if uint(i) >= uint(len(tt.methods)) {
  1891				panic("reflect: internal error: invalid method index")
  1892			}
  1893			m := &tt.methods[i]
  1894			return v.typ.typeOff(m.typ)
  1895		}
  1896		// Method on concrete type.
  1897		ms := v.typ.exportedMethods()
  1898		if uint(i) >= uint(len(ms)) {
  1899			panic("reflect: internal error: invalid method index")
  1900		}
  1901		m := ms[i]
  1902		return v.typ.typeOff(m.mtyp)
  1903	}
  1904	
  1905	// Uint returns v's underlying value, as a uint64.
  1906	// It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64.
  1907	func (v Value) Uint() uint64 {
  1908		k := v.kind()
  1909		p := v.ptr
  1910		switch k {
  1911		case Uint:
  1912			return uint64(*(*uint)(p))
  1913		case Uint8:
  1914			return uint64(*(*uint8)(p))
  1915		case Uint16:
  1916			return uint64(*(*uint16)(p))
  1917		case Uint32:
  1918			return uint64(*(*uint32)(p))
  1919		case Uint64:
  1920			return *(*uint64)(p)
  1921		case Uintptr:
  1922			return uint64(*(*uintptr)(p))
  1923		}
  1924		panic(&ValueError{"reflect.Value.Uint", v.kind()})
  1925	}
  1926	
  1927	// UnsafeAddr returns a pointer to v's data.
  1928	// It is for advanced clients that also import the "unsafe" package.
  1929	// It panics if v is not addressable.
  1930	func (v Value) UnsafeAddr() uintptr {
  1931		// TODO: deprecate
  1932		if v.typ == nil {
  1933			panic(&ValueError{"reflect.Value.UnsafeAddr", Invalid})
  1934		}
  1935		if v.flag&flagAddr == 0 {
  1936			panic("reflect.Value.UnsafeAddr of unaddressable value")
  1937		}
  1938		return uintptr(v.ptr)
  1939	}
  1940	
  1941	// StringHeader is the runtime representation of a string.
  1942	// It cannot be used safely or portably and its representation may
  1943	// change in a later release.
  1944	// Moreover, the Data field is not sufficient to guarantee the data
  1945	// it references will not be garbage collected, so programs must keep
  1946	// a separate, correctly typed pointer to the underlying data.
  1947	type StringHeader struct {
  1948		Data uintptr
  1949		Len  int
  1950	}
  1951	
  1952	// stringHeader is a safe version of StringHeader used within this package.
  1953	type stringHeader struct {
  1954		Data unsafe.Pointer
  1955		Len  int
  1956	}
  1957	
  1958	// SliceHeader is the runtime representation of a slice.
  1959	// It cannot be used safely or portably and its representation may
  1960	// change in a later release.
  1961	// Moreover, the Data field is not sufficient to guarantee the data
  1962	// it references will not be garbage collected, so programs must keep
  1963	// a separate, correctly typed pointer to the underlying data.
  1964	type SliceHeader struct {
  1965		Data uintptr
  1966		Len  int
  1967		Cap  int
  1968	}
  1969	
  1970	// sliceHeader is a safe version of SliceHeader used within this package.
  1971	type sliceHeader struct {
  1972		Data unsafe.Pointer
  1973		Len  int
  1974		Cap  int
  1975	}
  1976	
  1977	func typesMustMatch(what string, t1, t2 Type) {
  1978		if t1 != t2 {
  1979			panic(what + ": " + t1.String() + " != " + t2.String())
  1980		}
  1981	}
  1982	
  1983	// arrayAt returns the i-th element of p,
  1984	// an array whose elements are eltSize bytes wide.
  1985	// The array pointed at by p must have at least i+1 elements:
  1986	// it is invalid (but impossible to check here) to pass i >= len,
  1987	// because then the result will point outside the array.
  1988	// whySafe must explain why i < len. (Passing "i < len" is fine;
  1989	// the benefit is to surface this assumption at the call site.)
  1990	func arrayAt(p unsafe.Pointer, i int, eltSize uintptr, whySafe string) unsafe.Pointer {
  1991		return add(p, uintptr(i)*eltSize, "i < len")
  1992	}
  1993	
  1994	// grow grows the slice s so that it can hold extra more values, allocating
  1995	// more capacity if needed. It also returns the old and new slice lengths.
  1996	func grow(s Value, extra int) (Value, int, int) {
  1997		i0 := s.Len()
  1998		i1 := i0 + extra
  1999		if i1 < i0 {
  2000			panic("reflect.Append: slice overflow")
  2001		}
  2002		m := s.Cap()
  2003		if i1 <= m {
  2004			return s.Slice(0, i1), i0, i1
  2005		}
  2006		if m == 0 {
  2007			m = extra
  2008		} else {
  2009			for m < i1 {
  2010				if i0 < 1024 {
  2011					m += m
  2012				} else {
  2013					m += m / 4
  2014				}
  2015			}
  2016		}
  2017		t := MakeSlice(s.Type(), i1, m)
  2018		Copy(t, s)
  2019		return t, i0, i1
  2020	}
  2021	
  2022	// Append appends the values x to a slice s and returns the resulting slice.
  2023	// As in Go, each x's value must be assignable to the slice's element type.
  2024	func Append(s Value, x ...Value) Value {
  2025		s.mustBe(Slice)
  2026		s, i0, i1 := grow(s, len(x))
  2027		for i, j := i0, 0; i < i1; i, j = i+1, j+1 {
  2028			s.Index(i).Set(x[j])
  2029		}
  2030		return s
  2031	}
  2032	
  2033	// AppendSlice appends a slice t to a slice s and returns the resulting slice.
  2034	// The slices s and t must have the same element type.
  2035	func AppendSlice(s, t Value) Value {
  2036		s.mustBe(Slice)
  2037		t.mustBe(Slice)
  2038		typesMustMatch("reflect.AppendSlice", s.Type().Elem(), t.Type().Elem())
  2039		s, i0, i1 := grow(s, t.Len())
  2040		Copy(s.Slice(i0, i1), t)
  2041		return s
  2042	}
  2043	
  2044	// Copy copies the contents of src into dst until either
  2045	// dst has been filled or src has been exhausted.
  2046	// It returns the number of elements copied.
  2047	// Dst and src each must have kind Slice or Array, and
  2048	// dst and src must have the same element type.
  2049	//
  2050	// As a special case, src can have kind String if the element type of dst is kind Uint8.
  2051	func Copy(dst, src Value) int {
  2052		dk := dst.kind()
  2053		if dk != Array && dk != Slice {
  2054			panic(&ValueError{"reflect.Copy", dk})
  2055		}
  2056		if dk == Array {
  2057			dst.mustBeAssignable()
  2058		}
  2059		dst.mustBeExported()
  2060	
  2061		sk := src.kind()
  2062		var stringCopy bool
  2063		if sk != Array && sk != Slice {
  2064			stringCopy = sk == String && dst.typ.Elem().Kind() == Uint8
  2065			if !stringCopy {
  2066				panic(&ValueError{"reflect.Copy", sk})
  2067			}
  2068		}
  2069		src.mustBeExported()
  2070	
  2071		de := dst.typ.Elem()
  2072		if !stringCopy {
  2073			se := src.typ.Elem()
  2074			typesMustMatch("reflect.Copy", de, se)
  2075		}
  2076	
  2077		var ds, ss sliceHeader
  2078		if dk == Array {
  2079			ds.Data = dst.ptr
  2080			ds.Len = dst.Len()
  2081			ds.Cap = ds.Len
  2082		} else {
  2083			ds = *(*sliceHeader)(dst.ptr)
  2084		}
  2085		if sk == Array {
  2086			ss.Data = src.ptr
  2087			ss.Len = src.Len()
  2088			ss.Cap = ss.Len
  2089		} else if sk == Slice {
  2090			ss = *(*sliceHeader)(src.ptr)
  2091		} else {
  2092			sh := *(*stringHeader)(src.ptr)
  2093			ss.Data = sh.Data
  2094			ss.Len = sh.Len
  2095			ss.Cap = sh.Len
  2096		}
  2097	
  2098		return typedslicecopy(de.common(), ds, ss)
  2099	}
  2100	
  2101	// A runtimeSelect is a single case passed to rselect.
  2102	// This must match ../runtime/select.go:/runtimeSelect
  2103	type runtimeSelect struct {
  2104		dir SelectDir      // SelectSend, SelectRecv or SelectDefault
  2105		typ *rtype         // channel type
  2106		ch  unsafe.Pointer // channel
  2107		val unsafe.Pointer // ptr to data (SendDir) or ptr to receive buffer (RecvDir)
  2108	}
  2109	
  2110	// rselect runs a select. It returns the index of the chosen case.
  2111	// If the case was a receive, val is filled in with the received value.
  2112	// The conventional OK bool indicates whether the receive corresponds
  2113	// to a sent value.
  2114	//go:noescape
  2115	func rselect([]runtimeSelect) (chosen int, recvOK bool)
  2116	
  2117	// A SelectDir describes the communication direction of a select case.
  2118	type SelectDir int
  2119	
  2120	// NOTE: These values must match ../runtime/select.go:/selectDir.
  2121	
  2122	const (
  2123		_             SelectDir = iota
  2124		SelectSend              // case Chan <- Send
  2125		SelectRecv              // case <-Chan:
  2126		SelectDefault           // default
  2127	)
  2128	
  2129	// A SelectCase describes a single case in a select operation.
  2130	// The kind of case depends on Dir, the communication direction.
  2131	//
  2132	// If Dir is SelectDefault, the case represents a default case.
  2133	// Chan and Send must be zero Values.
  2134	//
  2135	// If Dir is SelectSend, the case represents a send operation.
  2136	// Normally Chan's underlying value must be a channel, and Send's underlying value must be
  2137	// assignable to the channel's element type. As a special case, if Chan is a zero Value,
  2138	// then the case is ignored, and the field Send will also be ignored and may be either zero
  2139	// or non-zero.
  2140	//
  2141	// If Dir is SelectRecv, the case represents a receive operation.
  2142	// Normally Chan's underlying value must be a channel and Send must be a zero Value.
  2143	// If Chan is a zero Value, then the case is ignored, but Send must still be a zero Value.
  2144	// When a receive operation is selected, the received Value is returned by Select.
  2145	//
  2146	type SelectCase struct {
  2147		Dir  SelectDir // direction of case
  2148		Chan Value     // channel to use (for send or receive)
  2149		Send Value     // value to send (for send)
  2150	}
  2151	
  2152	// Select executes a select operation described by the list of cases.
  2153	// Like the Go select statement, it blocks until at least one of the cases
  2154	// can proceed, makes a uniform pseudo-random choice,
  2155	// and then executes that case. It returns the index of the chosen case
  2156	// and, if that case was a receive operation, the value received and a
  2157	// boolean indicating whether the value corresponds to a send on the channel
  2158	// (as opposed to a zero value received because the channel is closed).
  2159	func Select(cases []SelectCase) (chosen int, recv Value, recvOK bool) {
  2160		// NOTE: Do not trust that caller is not modifying cases data underfoot.
  2161		// The range is safe because the caller cannot modify our copy of the len
  2162		// and each iteration makes its own copy of the value c.
  2163		runcases := make([]runtimeSelect, len(cases))
  2164		haveDefault := false
  2165		for i, c := range cases {
  2166			rc := &runcases[i]
  2167			rc.dir = c.Dir
  2168			switch c.Dir {
  2169			default:
  2170				panic("reflect.Select: invalid Dir")
  2171	
  2172			case SelectDefault: // default
  2173				if haveDefault {
  2174					panic("reflect.Select: multiple default cases")
  2175				}
  2176				haveDefault = true
  2177				if c.Chan.IsValid() {
  2178					panic("reflect.Select: default case has Chan value")
  2179				}
  2180				if c.Send.IsValid() {
  2181					panic("reflect.Select: default case has Send value")
  2182				}
  2183	
  2184			case SelectSend:
  2185				ch := c.Chan
  2186				if !ch.IsValid() {
  2187					break
  2188				}
  2189				ch.mustBe(Chan)
  2190				ch.mustBeExported()
  2191				tt := (*chanType)(unsafe.Pointer(ch.typ))
  2192				if ChanDir(tt.dir)&SendDir == 0 {
  2193					panic("reflect.Select: SendDir case using recv-only channel")
  2194				}
  2195				rc.ch = ch.pointer()
  2196				rc.typ = &tt.rtype
  2197				v := c.Send
  2198				if !v.IsValid() {
  2199					panic("reflect.Select: SendDir case missing Send value")
  2200				}
  2201				v.mustBeExported()
  2202				v = v.assignTo("reflect.Select", tt.elem, nil)
  2203				if v.flag&flagIndir != 0 {
  2204					rc.val = v.ptr
  2205				} else {
  2206					rc.val = unsafe.Pointer(&v.ptr)
  2207				}
  2208	
  2209			case SelectRecv:
  2210				if c.Send.IsValid() {
  2211					panic("reflect.Select: RecvDir case has Send value")
  2212				}
  2213				ch := c.Chan
  2214				if !ch.IsValid() {
  2215					break
  2216				}
  2217				ch.mustBe(Chan)
  2218				ch.mustBeExported()
  2219				tt := (*chanType)(unsafe.Pointer(ch.typ))
  2220				if ChanDir(tt.dir)&RecvDir == 0 {
  2221					panic("reflect.Select: RecvDir case using send-only channel")
  2222				}
  2223				rc.ch = ch.pointer()
  2224				rc.typ = &tt.rtype
  2225				rc.val = unsafe_New(tt.elem)
  2226			}
  2227		}
  2228	
  2229		chosen, recvOK = rselect(runcases)
  2230		if runcases[chosen].dir == SelectRecv {
  2231			tt := (*chanType)(unsafe.Pointer(runcases[chosen].typ))
  2232			t := tt.elem
  2233			p := runcases[chosen].val
  2234			fl := flag(t.Kind())
  2235			if ifaceIndir(t) {
  2236				recv = Value{t, p, fl | flagIndir}
  2237			} else {
  2238				recv = Value{t, *(*unsafe.Pointer)(p), fl}
  2239			}
  2240		}
  2241		return chosen, recv, recvOK
  2242	}
  2243	
  2244	/*
  2245	 * constructors
  2246	 */
  2247	
  2248	// implemented in package runtime
  2249	func unsafe_New(*rtype) unsafe.Pointer
  2250	func unsafe_NewArray(*rtype, int) unsafe.Pointer
  2251	
  2252	// MakeSlice creates a new zero-initialized slice value
  2253	// for the specified slice type, length, and capacity.
  2254	func MakeSlice(typ Type, len, cap int) Value {
  2255		if typ.Kind() != Slice {
  2256			panic("reflect.MakeSlice of non-slice type")
  2257		}
  2258		if len < 0 {
  2259			panic("reflect.MakeSlice: negative len")
  2260		}
  2261		if cap < 0 {
  2262			panic("reflect.MakeSlice: negative cap")
  2263		}
  2264		if len > cap {
  2265			panic("reflect.MakeSlice: len > cap")
  2266		}
  2267	
  2268		s := sliceHeader{unsafe_NewArray(typ.Elem().(*rtype), cap), len, cap}
  2269		return Value{typ.(*rtype), unsafe.Pointer(&s), flagIndir | flag(Slice)}
  2270	}
  2271	
  2272	// MakeChan creates a new channel with the specified type and buffer size.
  2273	func MakeChan(typ Type, buffer int) Value {
  2274		if typ.Kind() != Chan {
  2275			panic("reflect.MakeChan of non-chan type")
  2276		}
  2277		if buffer < 0 {
  2278			panic("reflect.MakeChan: negative buffer size")
  2279		}
  2280		if typ.ChanDir() != BothDir {
  2281			panic("reflect.MakeChan: unidirectional channel type")
  2282		}
  2283		t := typ.(*rtype)
  2284		ch := makechan(t, buffer)
  2285		return Value{t, ch, flag(Chan)}
  2286	}
  2287	
  2288	// MakeMap creates a new map with the specified type.
  2289	func MakeMap(typ Type) Value {
  2290		return MakeMapWithSize(typ, 0)
  2291	}
  2292	
  2293	// MakeMapWithSize creates a new map with the specified type
  2294	// and initial space for approximately n elements.
  2295	func MakeMapWithSize(typ Type, n int) Value {
  2296		if typ.Kind() != Map {
  2297			panic("reflect.MakeMapWithSize of non-map type")
  2298		}
  2299		t := typ.(*rtype)
  2300		m := makemap(t, n)
  2301		return Value{t, m, flag(Map)}
  2302	}
  2303	
  2304	// Indirect returns the value that v points to.
  2305	// If v is a nil pointer, Indirect returns a zero Value.
  2306	// If v is not a pointer, Indirect returns v.
  2307	func Indirect(v Value) Value {
  2308		if v.Kind() != Ptr {
  2309			return v
  2310		}
  2311		return v.Elem()
  2312	}
  2313	
  2314	// ValueOf returns a new Value initialized to the concrete value
  2315	// stored in the interface i. ValueOf(nil) returns the zero Value.
  2316	func ValueOf(i interface{}) Value {
  2317		if i == nil {
  2318			return Value{}
  2319		}
  2320	
  2321		// TODO: Maybe allow contents of a Value to live on the stack.
  2322		// For now we make the contents always escape to the heap. It
  2323		// makes life easier in a few places (see chanrecv/mapassign
  2324		// comment below).
  2325		escapes(i)
  2326	
  2327		return unpackEface(i)
  2328	}
  2329	
  2330	// Zero returns a Value representing the zero value for the specified type.
  2331	// The result is different from the zero value of the Value struct,
  2332	// which represents no value at all.
  2333	// For example, Zero(TypeOf(42)) returns a Value with Kind Int and value 0.
  2334	// The returned value is neither addressable nor settable.
  2335	func Zero(typ Type) Value {
  2336		if typ == nil {
  2337			panic("reflect: Zero(nil)")
  2338		}
  2339		t := typ.(*rtype)
  2340		fl := flag(t.Kind())
  2341		if ifaceIndir(t) {
  2342			return Value{t, unsafe_New(t), fl | flagIndir}
  2343		}
  2344		return Value{t, nil, fl}
  2345	}
  2346	
  2347	// New returns a Value representing a pointer to a new zero value
  2348	// for the specified type. That is, the returned Value's Type is PtrTo(typ).
  2349	func New(typ Type) Value {
  2350		if typ == nil {
  2351			panic("reflect: New(nil)")
  2352		}
  2353		t := typ.(*rtype)
  2354		ptr := unsafe_New(t)
  2355		fl := flag(Ptr)
  2356		return Value{t.ptrTo(), ptr, fl}
  2357	}
  2358	
  2359	// NewAt returns a Value representing a pointer to a value of the
  2360	// specified type, using p as that pointer.
  2361	func NewAt(typ Type, p unsafe.Pointer) Value {
  2362		fl := flag(Ptr)
  2363		t := typ.(*rtype)
  2364		return Value{t.ptrTo(), p, fl}
  2365	}
  2366	
  2367	// assignTo returns a value v that can be assigned directly to typ.
  2368	// It panics if v is not assignable to typ.
  2369	// For a conversion to an interface type, target is a suggested scratch space to use.
  2370	func (v Value) assignTo(context string, dst *rtype, target unsafe.Pointer) Value {
  2371		if v.flag&flagMethod != 0 {
  2372			v = makeMethodValue(context, v)
  2373		}
  2374	
  2375		switch {
  2376		case directlyAssignable(dst, v.typ):
  2377			// Overwrite type so that they match.
  2378			// Same memory layout, so no harm done.
  2379			fl := v.flag&(flagAddr|flagIndir) | v.flag.ro()
  2380			fl |= flag(dst.Kind())
  2381			return Value{dst, v.ptr, fl}
  2382	
  2383		case implements(dst, v.typ):
  2384			if target == nil {
  2385				target = unsafe_New(dst)
  2386			}
  2387			if v.Kind() == Interface && v.IsNil() {
  2388				// A nil ReadWriter passed to nil Reader is OK,
  2389				// but using ifaceE2I below will panic.
  2390				// Avoid the panic by returning a nil dst (e.g., Reader) explicitly.
  2391				return Value{dst, nil, flag(Interface)}
  2392			}
  2393			x := valueInterface(v, false)
  2394			if dst.NumMethod() == 0 {
  2395				*(*interface{})(target) = x
  2396			} else {
  2397				ifaceE2I(dst, x, target)
  2398			}
  2399			return Value{dst, target, flagIndir | flag(Interface)}
  2400		}
  2401	
  2402		// Failed.
  2403		panic(context + ": value of type " + v.typ.String() + " is not assignable to type " + dst.String())
  2404	}
  2405	
  2406	// Convert returns the value v converted to type t.
  2407	// If the usual Go conversion rules do not allow conversion
  2408	// of the value v to type t, Convert panics.
  2409	func (v Value) Convert(t Type) Value {
  2410		if v.flag&flagMethod != 0 {
  2411			v = makeMethodValue("Convert", v)
  2412		}
  2413		op := convertOp(t.common(), v.typ)
  2414		if op == nil {
  2415			panic("reflect.Value.Convert: value of type " + v.typ.String() + " cannot be converted to type " + t.String())
  2416		}
  2417		return op(v, t)
  2418	}
  2419	
  2420	// convertOp returns the function to convert a value of type src
  2421	// to a value of type dst. If the conversion is illegal, convertOp returns nil.
  2422	func convertOp(dst, src *rtype) func(Value, Type) Value {
  2423		switch src.Kind() {
  2424		case Int, Int8, Int16, Int32, Int64:
  2425			switch dst.Kind() {
  2426			case Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
  2427				return cvtInt
  2428			case Float32, Float64:
  2429				return cvtIntFloat
  2430			case String:
  2431				return cvtIntString
  2432			}
  2433	
  2434		case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
  2435			switch dst.Kind() {
  2436			case Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
  2437				return cvtUint
  2438			case Float32, Float64:
  2439				return cvtUintFloat
  2440			case String:
  2441				return cvtUintString
  2442			}
  2443	
  2444		case Float32, Float64:
  2445			switch dst.Kind() {
  2446			case Int, Int8, Int16, Int32, Int64:
  2447				return cvtFloatInt
  2448			case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
  2449				return cvtFloatUint
  2450			case Float32, Float64:
  2451				return cvtFloat
  2452			}
  2453	
  2454		case Complex64, Complex128:
  2455			switch dst.Kind() {
  2456			case Complex64, Complex128:
  2457				return cvtComplex
  2458			}
  2459	
  2460		case String:
  2461			if dst.Kind() == Slice && dst.Elem().PkgPath() == "" {
  2462				switch dst.Elem().Kind() {
  2463				case Uint8:
  2464					return cvtStringBytes
  2465				case Int32:
  2466					return cvtStringRunes
  2467				}
  2468			}
  2469	
  2470		case Slice:
  2471			if dst.Kind() == String && src.Elem().PkgPath() == "" {
  2472				switch src.Elem().Kind() {
  2473				case Uint8:
  2474					return cvtBytesString
  2475				case Int32:
  2476					return cvtRunesString
  2477				}
  2478			}
  2479		}
  2480	
  2481		// dst and src have same underlying type.
  2482		if haveIdenticalUnderlyingType(dst, src, false) {
  2483			return cvtDirect
  2484		}
  2485	
  2486		// dst and src are non-defined pointer types with same underlying base type.
  2487		if dst.Kind() == Ptr && dst.Name() == "" &&
  2488			src.Kind() == Ptr && src.Name() == "" &&
  2489			haveIdenticalUnderlyingType(dst.Elem().common(), src.Elem().common(), false) {
  2490			return cvtDirect
  2491		}
  2492	
  2493		if implements(dst, src) {
  2494			if src.Kind() == Interface {
  2495				return cvtI2I
  2496			}
  2497			return cvtT2I
  2498		}
  2499	
  2500		return nil
  2501	}
  2502	
  2503	// makeInt returns a Value of type t equal to bits (possibly truncated),
  2504	// where t is a signed or unsigned int type.
  2505	func makeInt(f flag, bits uint64, t Type) Value {
  2506		typ := t.common()
  2507		ptr := unsafe_New(typ)
  2508		switch typ.size {
  2509		case 1:
  2510			*(*uint8)(ptr) = uint8(bits)
  2511		case 2:
  2512			*(*uint16)(ptr) = uint16(bits)
  2513		case 4:
  2514			*(*uint32)(ptr) = uint32(bits)
  2515		case 8:
  2516			*(*uint64)(ptr) = bits
  2517		}
  2518		return Value{typ, ptr, f | flagIndir | flag(typ.Kind())}
  2519	}
  2520	
  2521	// makeFloat returns a Value of type t equal to v (possibly truncated to float32),
  2522	// where t is a float32 or float64 type.
  2523	func makeFloat(f flag, v float64, t Type) Value {
  2524		typ := t.common()
  2525		ptr := unsafe_New(typ)
  2526		switch typ.size {
  2527		case 4:
  2528			*(*float32)(ptr) = float32(v)
  2529		case 8:
  2530			*(*float64)(ptr) = v
  2531		}
  2532		return Value{typ, ptr, f | flagIndir | flag(typ.Kind())}
  2533	}
  2534	
  2535	// makeComplex returns a Value of type t equal to v (possibly truncated to complex64),
  2536	// where t is a complex64 or complex128 type.
  2537	func makeComplex(f flag, v complex128, t Type) Value {
  2538		typ := t.common()
  2539		ptr := unsafe_New(typ)
  2540		switch typ.size {
  2541		case 8:
  2542			*(*complex64)(ptr) = complex64(v)
  2543		case 16:
  2544			*(*complex128)(ptr) = v
  2545		}
  2546		return Value{typ, ptr, f | flagIndir | flag(typ.Kind())}
  2547	}
  2548	
  2549	func makeString(f flag, v string, t Type) Value {
  2550		ret := New(t).Elem()
  2551		ret.SetString(v)
  2552		ret.flag = ret.flag&^flagAddr | f
  2553		return ret
  2554	}
  2555	
  2556	func makeBytes(f flag, v []byte, t Type) Value {
  2557		ret := New(t).Elem()
  2558		ret.SetBytes(v)
  2559		ret.flag = ret.flag&^flagAddr | f
  2560		return ret
  2561	}
  2562	
  2563	func makeRunes(f flag, v []rune, t Type) Value {
  2564		ret := New(t).Elem()
  2565		ret.setRunes(v)
  2566		ret.flag = ret.flag&^flagAddr | f
  2567		return ret
  2568	}
  2569	
  2570	// These conversion functions are returned by convertOp
  2571	// for classes of conversions. For example, the first function, cvtInt,
  2572	// takes any value v of signed int type and returns the value converted
  2573	// to type t, where t is any signed or unsigned int type.
  2574	
  2575	// convertOp: intXX -> [u]intXX
  2576	func cvtInt(v Value, t Type) Value {
  2577		return makeInt(v.flag.ro(), uint64(v.Int()), t)
  2578	}
  2579	
  2580	// convertOp: uintXX -> [u]intXX
  2581	func cvtUint(v Value, t Type) Value {
  2582		return makeInt(v.flag.ro(), v.Uint(), t)
  2583	}
  2584	
  2585	// convertOp: floatXX -> intXX
  2586	func cvtFloatInt(v Value, t Type) Value {
  2587		return makeInt(v.flag.ro(), uint64(int64(v.Float())), t)
  2588	}
  2589	
  2590	// convertOp: floatXX -> uintXX
  2591	func cvtFloatUint(v Value, t Type) Value {
  2592		return makeInt(v.flag.ro(), uint64(v.Float()), t)
  2593	}
  2594	
  2595	// convertOp: intXX -> floatXX
  2596	func cvtIntFloat(v Value, t Type) Value {
  2597		return makeFloat(v.flag.ro(), float64(v.Int()), t)
  2598	}
  2599	
  2600	// convertOp: uintXX -> floatXX
  2601	func cvtUintFloat(v Value, t Type) Value {
  2602		return makeFloat(v.flag.ro(), float64(v.Uint()), t)
  2603	}
  2604	
  2605	// convertOp: floatXX -> floatXX
  2606	func cvtFloat(v Value, t Type) Value {
  2607		return makeFloat(v.flag.ro(), v.Float(), t)
  2608	}
  2609	
  2610	// convertOp: complexXX -> complexXX
  2611	func cvtComplex(v Value, t Type) Value {
  2612		return makeComplex(v.flag.ro(), v.Complex(), t)
  2613	}
  2614	
  2615	// convertOp: intXX -> string
  2616	func cvtIntString(v Value, t Type) Value {
  2617		return makeString(v.flag.ro(), string(v.Int()), t)
  2618	}
  2619	
  2620	// convertOp: uintXX -> string
  2621	func cvtUintString(v Value, t Type) Value {
  2622		return makeString(v.flag.ro(), string(v.Uint()), t)
  2623	}
  2624	
  2625	// convertOp: []byte -> string
  2626	func cvtBytesString(v Value, t Type) Value {
  2627		return makeString(v.flag.ro(), string(v.Bytes()), t)
  2628	}
  2629	
  2630	// convertOp: string -> []byte
  2631	func cvtStringBytes(v Value, t Type) Value {
  2632		return makeBytes(v.flag.ro(), []byte(v.String()), t)
  2633	}
  2634	
  2635	// convertOp: []rune -> string
  2636	func cvtRunesString(v Value, t Type) Value {
  2637		return makeString(v.flag.ro(), string(v.runes()), t)
  2638	}
  2639	
  2640	// convertOp: string -> []rune
  2641	func cvtStringRunes(v Value, t Type) Value {
  2642		return makeRunes(v.flag.ro(), []rune(v.String()), t)
  2643	}
  2644	
  2645	// convertOp: direct copy
  2646	func cvtDirect(v Value, typ Type) Value {
  2647		f := v.flag
  2648		t := typ.common()
  2649		ptr := v.ptr
  2650		if f&flagAddr != 0 {
  2651			// indirect, mutable word - make a copy
  2652			c := unsafe_New(t)
  2653			typedmemmove(t, c, ptr)
  2654			ptr = c
  2655			f &^= flagAddr
  2656		}
  2657		return Value{t, ptr, v.flag.ro() | f} // v.flag.ro()|f == f?
  2658	}
  2659	
  2660	// convertOp: concrete -> interface
  2661	func cvtT2I(v Value, typ Type) Value {
  2662		target := unsafe_New(typ.common())
  2663		x := valueInterface(v, false)
  2664		if typ.NumMethod() == 0 {
  2665			*(*interface{})(target) = x
  2666		} else {
  2667			ifaceE2I(typ.(*rtype), x, target)
  2668		}
  2669		return Value{typ.common(), target, v.flag.ro() | flagIndir | flag(Interface)}
  2670	}
  2671	
  2672	// convertOp: interface -> interface
  2673	func cvtI2I(v Value, typ Type) Value {
  2674		if v.IsNil() {
  2675			ret := Zero(typ)
  2676			ret.flag |= v.flag.ro()
  2677			return ret
  2678		}
  2679		return cvtT2I(v.Elem(), typ)
  2680	}
  2681	
  2682	// implemented in ../runtime
  2683	func chancap(ch unsafe.Pointer) int
  2684	func chanclose(ch unsafe.Pointer)
  2685	func chanlen(ch unsafe.Pointer) int
  2686	
  2687	// Note: some of the noescape annotations below are technically a lie,
  2688	// but safe in the context of this package. Functions like chansend
  2689	// and mapassign don't escape the referent, but may escape anything
  2690	// the referent points to (they do shallow copies of the referent).
  2691	// It is safe in this package because the referent may only point
  2692	// to something a Value may point to, and that is always in the heap
  2693	// (due to the escapes() call in ValueOf).
  2694	
  2695	//go:noescape
  2696	func chanrecv(ch unsafe.Pointer, nb bool, val unsafe.Pointer) (selected, received bool)
  2697	
  2698	//go:noescape
  2699	func chansend(ch unsafe.Pointer, val unsafe.Pointer, nb bool) bool
  2700	
  2701	func makechan(typ *rtype, size int) (ch unsafe.Pointer)
  2702	func makemap(t *rtype, cap int) (m unsafe.Pointer)
  2703	
  2704	//go:noescape
  2705	func mapaccess(t *rtype, m unsafe.Pointer, key unsafe.Pointer) (val unsafe.Pointer)
  2706	
  2707	//go:noescape
  2708	func mapassign(t *rtype, m unsafe.Pointer, key, val unsafe.Pointer)
  2709	
  2710	//go:noescape
  2711	func mapdelete(t *rtype, m unsafe.Pointer, key unsafe.Pointer)
  2712	
  2713	// m escapes into the return value, but the caller of mapiterinit
  2714	// doesn't let the return value escape.
  2715	//go:noescape
  2716	func mapiterinit(t *rtype, m unsafe.Pointer) unsafe.Pointer
  2717	
  2718	//go:noescape
  2719	func mapiterkey(it unsafe.Pointer) (key unsafe.Pointer)
  2720	
  2721	//go:noescape
  2722	func mapiterelem(it unsafe.Pointer) (elem unsafe.Pointer)
  2723	
  2724	//go:noescape
  2725	func mapiternext(it unsafe.Pointer)
  2726	
  2727	//go:noescape
  2728	func maplen(m unsafe.Pointer) int
  2729	
  2730	// call calls fn with a copy of the n argument bytes pointed at by arg.
  2731	// After fn returns, reflectcall copies n-retoffset result bytes
  2732	// back into arg+retoffset before returning. If copying result bytes back,
  2733	// the caller must pass the argument frame type as argtype, so that
  2734	// call can execute appropriate write barriers during the copy.
  2735	//
  2736	//go:linkname call runtime.reflectcall
  2737	func call(argtype *rtype, fn, arg unsafe.Pointer, n uint32, retoffset uint32)
  2738	
  2739	func ifaceE2I(t *rtype, src interface{}, dst unsafe.Pointer)
  2740	
  2741	// memmove copies size bytes to dst from src. No write barriers are used.
  2742	//go:noescape
  2743	func memmove(dst, src unsafe.Pointer, size uintptr)
  2744	
  2745	// typedmemmove copies a value of type t to dst from src.
  2746	//go:noescape
  2747	func typedmemmove(t *rtype, dst, src unsafe.Pointer)
  2748	
  2749	// typedmemmovepartial is like typedmemmove but assumes that
  2750	// dst and src point off bytes into the value and only copies size bytes.
  2751	//go:noescape
  2752	func typedmemmovepartial(t *rtype, dst, src unsafe.Pointer, off, size uintptr)
  2753	
  2754	// typedmemclr zeros the value at ptr of type t.
  2755	//go:noescape
  2756	func typedmemclr(t *rtype, ptr unsafe.Pointer)
  2757	
  2758	// typedmemclrpartial is like typedmemclr but assumes that
  2759	// dst points off bytes into the value and only clears size bytes.
  2760	//go:noescape
  2761	func typedmemclrpartial(t *rtype, ptr unsafe.Pointer, off, size uintptr)
  2762	
  2763	// typedslicecopy copies a slice of elemType values from src to dst,
  2764	// returning the number of elements copied.
  2765	//go:noescape
  2766	func typedslicecopy(elemType *rtype, dst, src sliceHeader) int
  2767	
  2768	// Dummy annotation marking that the value x escapes,
  2769	// for use in cases where the reflect code is so clever that
  2770	// the compiler cannot follow.
  2771	func escapes(x interface{}) {
  2772		if dummy.b {
  2773			dummy.x = x
  2774		}
  2775	}
  2776	
  2777	var dummy struct {
  2778		b bool
  2779		x interface{}
  2780	}
  2781	

View as plain text