...

Source file src/pkg/math/rand/rand.go

     1	// Copyright 2009 The Go Authors. All rights reserved.
     2	// Use of this source code is governed by a BSD-style
     3	// license that can be found in the LICENSE file.
     4	
     5	// Package rand implements pseudo-random number generators.
     6	//
     7	// Random numbers are generated by a Source. Top-level functions, such as
     8	// Float64 and Int, use a default shared Source that produces a deterministic
     9	// sequence of values each time a program is run. Use the Seed function to
    10	// initialize the default Source if different behavior is required for each run.
    11	// The default Source is safe for concurrent use by multiple goroutines, but
    12	// Sources created by NewSource are not.
    13	//
    14	// Mathematical interval notation such as [0, n) is used throughout the
    15	// documentation for this package.
    16	//
    17	// For random numbers suitable for security-sensitive work, see the crypto/rand
    18	// package.
    19	package rand
    20	
    21	import "sync"
    22	
    23	// A Source represents a source of uniformly-distributed
    24	// pseudo-random int64 values in the range [0, 1<<63).
    25	type Source interface {
    26		Int63() int64
    27		Seed(seed int64)
    28	}
    29	
    30	// A Source64 is a Source that can also generate
    31	// uniformly-distributed pseudo-random uint64 values in
    32	// the range [0, 1<<64) directly.
    33	// If a Rand r's underlying Source s implements Source64,
    34	// then r.Uint64 returns the result of one call to s.Uint64
    35	// instead of making two calls to s.Int63.
    36	type Source64 interface {
    37		Source
    38		Uint64() uint64
    39	}
    40	
    41	// NewSource returns a new pseudo-random Source seeded with the given value.
    42	// Unlike the default Source used by top-level functions, this source is not
    43	// safe for concurrent use by multiple goroutines.
    44	func NewSource(seed int64) Source {
    45		var rng rngSource
    46		rng.Seed(seed)
    47		return &rng
    48	}
    49	
    50	// A Rand is a source of random numbers.
    51	type Rand struct {
    52		src Source
    53		s64 Source64 // non-nil if src is source64
    54	
    55		// readVal contains remainder of 63-bit integer used for bytes
    56		// generation during most recent Read call.
    57		// It is saved so next Read call can start where the previous
    58		// one finished.
    59		readVal int64
    60		// readPos indicates the number of low-order bytes of readVal
    61		// that are still valid.
    62		readPos int8
    63	}
    64	
    65	// New returns a new Rand that uses random values from src
    66	// to generate other random values.
    67	func New(src Source) *Rand {
    68		s64, _ := src.(Source64)
    69		return &Rand{src: src, s64: s64}
    70	}
    71	
    72	// Seed uses the provided seed value to initialize the generator to a deterministic state.
    73	// Seed should not be called concurrently with any other Rand method.
    74	func (r *Rand) Seed(seed int64) {
    75		if lk, ok := r.src.(*lockedSource); ok {
    76			lk.seedPos(seed, &r.readPos)
    77			return
    78		}
    79	
    80		r.src.Seed(seed)
    81		r.readPos = 0
    82	}
    83	
    84	// Int63 returns a non-negative pseudo-random 63-bit integer as an int64.
    85	func (r *Rand) Int63() int64 { return r.src.Int63() }
    86	
    87	// Uint32 returns a pseudo-random 32-bit value as a uint32.
    88	func (r *Rand) Uint32() uint32 { return uint32(r.Int63() >> 31) }
    89	
    90	// Uint64 returns a pseudo-random 64-bit value as a uint64.
    91	func (r *Rand) Uint64() uint64 {
    92		if r.s64 != nil {
    93			return r.s64.Uint64()
    94		}
    95		return uint64(r.Int63())>>31 | uint64(r.Int63())<<32
    96	}
    97	
    98	// Int31 returns a non-negative pseudo-random 31-bit integer as an int32.
    99	func (r *Rand) Int31() int32 { return int32(r.Int63() >> 32) }
   100	
   101	// Int returns a non-negative pseudo-random int.
   102	func (r *Rand) Int() int {
   103		u := uint(r.Int63())
   104		return int(u << 1 >> 1) // clear sign bit if int == int32
   105	}
   106	
   107	// Int63n returns, as an int64, a non-negative pseudo-random number in [0,n).
   108	// It panics if n <= 0.
   109	func (r *Rand) Int63n(n int64) int64 {
   110		if n <= 0 {
   111			panic("invalid argument to Int63n")
   112		}
   113		if n&(n-1) == 0 { // n is power of two, can mask
   114			return r.Int63() & (n - 1)
   115		}
   116		max := int64((1 << 63) - 1 - (1<<63)%uint64(n))
   117		v := r.Int63()
   118		for v > max {
   119			v = r.Int63()
   120		}
   121		return v % n
   122	}
   123	
   124	// Int31n returns, as an int32, a non-negative pseudo-random number in [0,n).
   125	// It panics if n <= 0.
   126	func (r *Rand) Int31n(n int32) int32 {
   127		if n <= 0 {
   128			panic("invalid argument to Int31n")
   129		}
   130		if n&(n-1) == 0 { // n is power of two, can mask
   131			return r.Int31() & (n - 1)
   132		}
   133		max := int32((1 << 31) - 1 - (1<<31)%uint32(n))
   134		v := r.Int31()
   135		for v > max {
   136			v = r.Int31()
   137		}
   138		return v % n
   139	}
   140	
   141	// int31n returns, as an int32, a non-negative pseudo-random number in [0,n).
   142	// n must be > 0, but int31n does not check this; the caller must ensure it.
   143	// int31n exists because Int31n is inefficient, but Go 1 compatibility
   144	// requires that the stream of values produced by math/rand remain unchanged.
   145	// int31n can thus only be used internally, by newly introduced APIs.
   146	//
   147	// For implementation details, see:
   148	// https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction
   149	// https://lemire.me/blog/2016/06/30/fast-random-shuffling
   150	func (r *Rand) int31n(n int32) int32 {
   151		v := r.Uint32()
   152		prod := uint64(v) * uint64(n)
   153		low := uint32(prod)
   154		if low < uint32(n) {
   155			thresh := uint32(-n) % uint32(n)
   156			for low < thresh {
   157				v = r.Uint32()
   158				prod = uint64(v) * uint64(n)
   159				low = uint32(prod)
   160			}
   161		}
   162		return int32(prod >> 32)
   163	}
   164	
   165	// Intn returns, as an int, a non-negative pseudo-random number in [0,n).
   166	// It panics if n <= 0.
   167	func (r *Rand) Intn(n int) int {
   168		if n <= 0 {
   169			panic("invalid argument to Intn")
   170		}
   171		if n <= 1<<31-1 {
   172			return int(r.Int31n(int32(n)))
   173		}
   174		return int(r.Int63n(int64(n)))
   175	}
   176	
   177	// Float64 returns, as a float64, a pseudo-random number in [0.0,1.0).
   178	func (r *Rand) Float64() float64 {
   179		// A clearer, simpler implementation would be:
   180		//	return float64(r.Int63n(1<<53)) / (1<<53)
   181		// However, Go 1 shipped with
   182		//	return float64(r.Int63()) / (1 << 63)
   183		// and we want to preserve that value stream.
   184		//
   185		// There is one bug in the value stream: r.Int63() may be so close
   186		// to 1<<63 that the division rounds up to 1.0, and we've guaranteed
   187		// that the result is always less than 1.0.
   188		//
   189		// We tried to fix this by mapping 1.0 back to 0.0, but since float64
   190		// values near 0 are much denser than near 1, mapping 1 to 0 caused
   191		// a theoretically significant overshoot in the probability of returning 0.
   192		// Instead of that, if we round up to 1, just try again.
   193		// Getting 1 only happens 1/2⁵³ of the time, so most clients
   194		// will not observe it anyway.
   195	again:
   196		f := float64(r.Int63()) / (1 << 63)
   197		if f == 1 {
   198			goto again // resample; this branch is taken O(never)
   199		}
   200		return f
   201	}
   202	
   203	// Float32 returns, as a float32, a pseudo-random number in [0.0,1.0).
   204	func (r *Rand) Float32() float32 {
   205		// Same rationale as in Float64: we want to preserve the Go 1 value
   206		// stream except we want to fix it not to return 1.0
   207		// This only happens 1/2²⁴ of the time (plus the 1/2⁵³ of the time in Float64).
   208	again:
   209		f := float32(r.Float64())
   210		if f == 1 {
   211			goto again // resample; this branch is taken O(very rarely)
   212		}
   213		return f
   214	}
   215	
   216	// Perm returns, as a slice of n ints, a pseudo-random permutation of the integers [0,n).
   217	func (r *Rand) Perm(n int) []int {
   218		m := make([]int, n)
   219		// In the following loop, the iteration when i=0 always swaps m[0] with m[0].
   220		// A change to remove this useless iteration is to assign 1 to i in the init
   221		// statement. But Perm also effects r. Making this change will affect
   222		// the final state of r. So this change can't be made for compatibility
   223		// reasons for Go 1.
   224		for i := 0; i < n; i++ {
   225			j := r.Intn(i + 1)
   226			m[i] = m[j]
   227			m[j] = i
   228		}
   229		return m
   230	}
   231	
   232	// Shuffle pseudo-randomizes the order of elements.
   233	// n is the number of elements. Shuffle panics if n < 0.
   234	// swap swaps the elements with indexes i and j.
   235	func (r *Rand) Shuffle(n int, swap func(i, j int)) {
   236		if n < 0 {
   237			panic("invalid argument to Shuffle")
   238		}
   239	
   240		// Fisher-Yates shuffle: https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle
   241		// Shuffle really ought not be called with n that doesn't fit in 32 bits.
   242		// Not only will it take a very long time, but with 2³¹! possible permutations,
   243		// there's no way that any PRNG can have a big enough internal state to
   244		// generate even a minuscule percentage of the possible permutations.
   245		// Nevertheless, the right API signature accepts an int n, so handle it as best we can.
   246		i := n - 1
   247		for ; i > 1<<31-1-1; i-- {
   248			j := int(r.Int63n(int64(i + 1)))
   249			swap(i, j)
   250		}
   251		for ; i > 0; i-- {
   252			j := int(r.int31n(int32(i + 1)))
   253			swap(i, j)
   254		}
   255	}
   256	
   257	// Read generates len(p) random bytes and writes them into p. It
   258	// always returns len(p) and a nil error.
   259	// Read should not be called concurrently with any other Rand method.
   260	func (r *Rand) Read(p []byte) (n int, err error) {
   261		if lk, ok := r.src.(*lockedSource); ok {
   262			return lk.read(p, &r.readVal, &r.readPos)
   263		}
   264		return read(p, r.Int63, &r.readVal, &r.readPos)
   265	}
   266	
   267	func read(p []byte, int63 func() int64, readVal *int64, readPos *int8) (n int, err error) {
   268		pos := *readPos
   269		val := *readVal
   270		for n = 0; n < len(p); n++ {
   271			if pos == 0 {
   272				val = int63()
   273				pos = 7
   274			}
   275			p[n] = byte(val)
   276			val >>= 8
   277			pos--
   278		}
   279		*readPos = pos
   280		*readVal = val
   281		return
   282	}
   283	
   284	/*
   285	 * Top-level convenience functions
   286	 */
   287	
   288	var globalRand = New(&lockedSource{src: NewSource(1).(Source64)})
   289	
   290	// Seed uses the provided seed value to initialize the default Source to a
   291	// deterministic state. If Seed is not called, the generator behaves as
   292	// if seeded by Seed(1). Seed values that have the same remainder when
   293	// divided by 2^31-1 generate the same pseudo-random sequence.
   294	// Seed, unlike the Rand.Seed method, is safe for concurrent use.
   295	func Seed(seed int64) { globalRand.Seed(seed) }
   296	
   297	// Int63 returns a non-negative pseudo-random 63-bit integer as an int64
   298	// from the default Source.
   299	func Int63() int64 { return globalRand.Int63() }
   300	
   301	// Uint32 returns a pseudo-random 32-bit value as a uint32
   302	// from the default Source.
   303	func Uint32() uint32 { return globalRand.Uint32() }
   304	
   305	// Uint64 returns a pseudo-random 64-bit value as a uint64
   306	// from the default Source.
   307	func Uint64() uint64 { return globalRand.Uint64() }
   308	
   309	// Int31 returns a non-negative pseudo-random 31-bit integer as an int32
   310	// from the default Source.
   311	func Int31() int32 { return globalRand.Int31() }
   312	
   313	// Int returns a non-negative pseudo-random int from the default Source.
   314	func Int() int { return globalRand.Int() }
   315	
   316	// Int63n returns, as an int64, a non-negative pseudo-random number in [0,n)
   317	// from the default Source.
   318	// It panics if n <= 0.
   319	func Int63n(n int64) int64 { return globalRand.Int63n(n) }
   320	
   321	// Int31n returns, as an int32, a non-negative pseudo-random number in [0,n)
   322	// from the default Source.
   323	// It panics if n <= 0.
   324	func Int31n(n int32) int32 { return globalRand.Int31n(n) }
   325	
   326	// Intn returns, as an int, a non-negative pseudo-random number in [0,n)
   327	// from the default Source.
   328	// It panics if n <= 0.
   329	func Intn(n int) int { return globalRand.Intn(n) }
   330	
   331	// Float64 returns, as a float64, a pseudo-random number in [0.0,1.0)
   332	// from the default Source.
   333	func Float64() float64 { return globalRand.Float64() }
   334	
   335	// Float32 returns, as a float32, a pseudo-random number in [0.0,1.0)
   336	// from the default Source.
   337	func Float32() float32 { return globalRand.Float32() }
   338	
   339	// Perm returns, as a slice of n ints, a pseudo-random permutation of the integers [0,n)
   340	// from the default Source.
   341	func Perm(n int) []int { return globalRand.Perm(n) }
   342	
   343	// Shuffle pseudo-randomizes the order of elements using the default Source.
   344	// n is the number of elements. Shuffle panics if n < 0.
   345	// swap swaps the elements with indexes i and j.
   346	func Shuffle(n int, swap func(i, j int)) { globalRand.Shuffle(n, swap) }
   347	
   348	// Read generates len(p) random bytes from the default Source and
   349	// writes them into p. It always returns len(p) and a nil error.
   350	// Read, unlike the Rand.Read method, is safe for concurrent use.
   351	func Read(p []byte) (n int, err error) { return globalRand.Read(p) }
   352	
   353	// NormFloat64 returns a normally distributed float64 in the range
   354	// [-math.MaxFloat64, +math.MaxFloat64] with
   355	// standard normal distribution (mean = 0, stddev = 1)
   356	// from the default Source.
   357	// To produce a different normal distribution, callers can
   358	// adjust the output using:
   359	//
   360	//  sample = NormFloat64() * desiredStdDev + desiredMean
   361	//
   362	func NormFloat64() float64 { return globalRand.NormFloat64() }
   363	
   364	// ExpFloat64 returns an exponentially distributed float64 in the range
   365	// (0, +math.MaxFloat64] with an exponential distribution whose rate parameter
   366	// (lambda) is 1 and whose mean is 1/lambda (1) from the default Source.
   367	// To produce a distribution with a different rate parameter,
   368	// callers can adjust the output using:
   369	//
   370	//  sample = ExpFloat64() / desiredRateParameter
   371	//
   372	func ExpFloat64() float64 { return globalRand.ExpFloat64() }
   373	
   374	type lockedSource struct {
   375		lk  sync.Mutex
   376		src Source64
   377	}
   378	
   379	func (r *lockedSource) Int63() (n int64) {
   380		r.lk.Lock()
   381		n = r.src.Int63()
   382		r.lk.Unlock()
   383		return
   384	}
   385	
   386	func (r *lockedSource) Uint64() (n uint64) {
   387		r.lk.Lock()
   388		n = r.src.Uint64()
   389		r.lk.Unlock()
   390		return
   391	}
   392	
   393	func (r *lockedSource) Seed(seed int64) {
   394		r.lk.Lock()
   395		r.src.Seed(seed)
   396		r.lk.Unlock()
   397	}
   398	
   399	// seedPos implements Seed for a lockedSource without a race condition.
   400	func (r *lockedSource) seedPos(seed int64, readPos *int8) {
   401		r.lk.Lock()
   402		r.src.Seed(seed)
   403		*readPos = 0
   404		r.lk.Unlock()
   405	}
   406	
   407	// read implements Read for a lockedSource without a race condition.
   408	func (r *lockedSource) read(p []byte, readVal *int64, readPos *int8) (n int, err error) {
   409		r.lk.Lock()
   410		n, err = read(p, r.src.Int63, readVal, readPos)
   411		r.lk.Unlock()
   412		return
   413	}
   414	

View as plain text