...

Source file src/pkg/math/cmplx/asin.go

     1	// Copyright 2010 The Go Authors. All rights reserved.
     2	// Use of this source code is governed by a BSD-style
     3	// license that can be found in the LICENSE file.
     4	
     5	package cmplx
     6	
     7	import "math"
     8	
     9	// The original C code, the long comment, and the constants
    10	// below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c.
    11	// The go code is a simplified version of the original C.
    12	//
    13	// Cephes Math Library Release 2.8:  June, 2000
    14	// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
    15	//
    16	// The readme file at http://netlib.sandia.gov/cephes/ says:
    17	//    Some software in this archive may be from the book _Methods and
    18	// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
    19	// International, 1989) or from the Cephes Mathematical Library, a
    20	// commercial product. In either event, it is copyrighted by the author.
    21	// What you see here may be used freely but it comes with no support or
    22	// guarantee.
    23	//
    24	//   The two known misprints in the book are repaired here in the
    25	// source listings for the gamma function and the incomplete beta
    26	// integral.
    27	//
    28	//   Stephen L. Moshier
    29	//   moshier@na-net.ornl.gov
    30	
    31	// Complex circular arc sine
    32	//
    33	// DESCRIPTION:
    34	//
    35	// Inverse complex sine:
    36	//                               2
    37	// w = -i clog( iz + csqrt( 1 - z ) ).
    38	//
    39	// casin(z) = -i casinh(iz)
    40	//
    41	// ACCURACY:
    42	//
    43	//                      Relative error:
    44	// arithmetic   domain     # trials      peak         rms
    45	//    DEC       -10,+10     10100       2.1e-15     3.4e-16
    46	//    IEEE      -10,+10     30000       2.2e-14     2.7e-15
    47	// Larger relative error can be observed for z near zero.
    48	// Also tested by csin(casin(z)) = z.
    49	
    50	// Asin returns the inverse sine of x.
    51	func Asin(x complex128) complex128 {
    52		if imag(x) == 0 && math.Abs(real(x)) <= 1 {
    53			return complex(math.Asin(real(x)), imag(x))
    54		}
    55		ct := complex(-imag(x), real(x)) // i * x
    56		xx := x * x
    57		x1 := complex(1-real(xx), -imag(xx)) // 1 - x*x
    58		x2 := Sqrt(x1)                       // x2 = sqrt(1 - x*x)
    59		w := Log(ct + x2)
    60		return complex(imag(w), -real(w)) // -i * w
    61	}
    62	
    63	// Asinh returns the inverse hyperbolic sine of x.
    64	func Asinh(x complex128) complex128 {
    65		if imag(x) == 0 && math.Abs(real(x)) <= 1 {
    66			return complex(math.Asinh(real(x)), imag(x))
    67		}
    68		xx := x * x
    69		x1 := complex(1+real(xx), imag(xx)) // 1 + x*x
    70		return Log(x + Sqrt(x1))            // log(x + sqrt(1 + x*x))
    71	}
    72	
    73	// Complex circular arc cosine
    74	//
    75	// DESCRIPTION:
    76	//
    77	// w = arccos z  =  PI/2 - arcsin z.
    78	//
    79	// ACCURACY:
    80	//
    81	//                      Relative error:
    82	// arithmetic   domain     # trials      peak         rms
    83	//    DEC       -10,+10      5200      1.6e-15      2.8e-16
    84	//    IEEE      -10,+10     30000      1.8e-14      2.2e-15
    85	
    86	// Acos returns the inverse cosine of x.
    87	func Acos(x complex128) complex128 {
    88		w := Asin(x)
    89		return complex(math.Pi/2-real(w), -imag(w))
    90	}
    91	
    92	// Acosh returns the inverse hyperbolic cosine of x.
    93	func Acosh(x complex128) complex128 {
    94		w := Acos(x)
    95		if imag(w) <= 0 {
    96			return complex(-imag(w), real(w)) // i * w
    97		}
    98		return complex(imag(w), -real(w)) // -i * w
    99	}
   100	
   101	// Complex circular arc tangent
   102	//
   103	// DESCRIPTION:
   104	//
   105	// If
   106	//     z = x + iy,
   107	//
   108	// then
   109	//          1       (    2x     )
   110	// Re w  =  - arctan(-----------)  +  k PI
   111	//          2       (     2    2)
   112	//                  (1 - x  - y )
   113	//
   114	//               ( 2         2)
   115	//          1    (x  +  (y+1) )
   116	// Im w  =  - log(------------)
   117	//          4    ( 2         2)
   118	//               (x  +  (y-1) )
   119	//
   120	// Where k is an arbitrary integer.
   121	//
   122	// catan(z) = -i catanh(iz).
   123	//
   124	// ACCURACY:
   125	//
   126	//                      Relative error:
   127	// arithmetic   domain     # trials      peak         rms
   128	//    DEC       -10,+10      5900       1.3e-16     7.8e-18
   129	//    IEEE      -10,+10     30000       2.3e-15     8.5e-17
   130	// The check catan( ctan(z) )  =  z, with |x| and |y| < PI/2,
   131	// had peak relative error 1.5e-16, rms relative error
   132	// 2.9e-17.  See also clog().
   133	
   134	// Atan returns the inverse tangent of x.
   135	func Atan(x complex128) complex128 {
   136		x2 := real(x) * real(x)
   137		a := 1 - x2 - imag(x)*imag(x)
   138		if a == 0 {
   139			return NaN()
   140		}
   141		t := 0.5 * math.Atan2(2*real(x), a)
   142		w := reducePi(t)
   143	
   144		t = imag(x) - 1
   145		b := x2 + t*t
   146		if b == 0 {
   147			return NaN()
   148		}
   149		t = imag(x) + 1
   150		c := (x2 + t*t) / b
   151		return complex(w, 0.25*math.Log(c))
   152	}
   153	
   154	// Atanh returns the inverse hyperbolic tangent of x.
   155	func Atanh(x complex128) complex128 {
   156		z := complex(-imag(x), real(x)) // z = i * x
   157		z = Atan(z)
   158		return complex(imag(z), -real(z)) // z = -i * z
   159	}
   160	

View as plain text