...

Source file src/pkg/math/bits/bits.go

     1	// Copyright 2017 The Go Authors. All rights reserved.
     2	// Use of this source code is governed by a BSD-style
     3	// license that can be found in the LICENSE file.
     4	
     5	//go:generate go run make_tables.go
     6	
     7	// Package bits implements bit counting and manipulation
     8	// functions for the predeclared unsigned integer types.
     9	package bits
    10	
    11	const uintSize = 32 << (^uint(0) >> 32 & 1) // 32 or 64
    12	
    13	// UintSize is the size of a uint in bits.
    14	const UintSize = uintSize
    15	
    16	// --- LeadingZeros ---
    17	
    18	// LeadingZeros returns the number of leading zero bits in x; the result is UintSize for x == 0.
    19	func LeadingZeros(x uint) int { return UintSize - Len(x) }
    20	
    21	// LeadingZeros8 returns the number of leading zero bits in x; the result is 8 for x == 0.
    22	func LeadingZeros8(x uint8) int { return 8 - Len8(x) }
    23	
    24	// LeadingZeros16 returns the number of leading zero bits in x; the result is 16 for x == 0.
    25	func LeadingZeros16(x uint16) int { return 16 - Len16(x) }
    26	
    27	// LeadingZeros32 returns the number of leading zero bits in x; the result is 32 for x == 0.
    28	func LeadingZeros32(x uint32) int { return 32 - Len32(x) }
    29	
    30	// LeadingZeros64 returns the number of leading zero bits in x; the result is 64 for x == 0.
    31	func LeadingZeros64(x uint64) int { return 64 - Len64(x) }
    32	
    33	// --- TrailingZeros ---
    34	
    35	// See http://supertech.csail.mit.edu/papers/debruijn.pdf
    36	const deBruijn32 = 0x077CB531
    37	
    38	var deBruijn32tab = [32]byte{
    39		0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
    40		31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9,
    41	}
    42	
    43	const deBruijn64 = 0x03f79d71b4ca8b09
    44	
    45	var deBruijn64tab = [64]byte{
    46		0, 1, 56, 2, 57, 49, 28, 3, 61, 58, 42, 50, 38, 29, 17, 4,
    47		62, 47, 59, 36, 45, 43, 51, 22, 53, 39, 33, 30, 24, 18, 12, 5,
    48		63, 55, 48, 27, 60, 41, 37, 16, 46, 35, 44, 21, 52, 32, 23, 11,
    49		54, 26, 40, 15, 34, 20, 31, 10, 25, 14, 19, 9, 13, 8, 7, 6,
    50	}
    51	
    52	// TrailingZeros returns the number of trailing zero bits in x; the result is UintSize for x == 0.
    53	func TrailingZeros(x uint) int {
    54		if UintSize == 32 {
    55			return TrailingZeros32(uint32(x))
    56		}
    57		return TrailingZeros64(uint64(x))
    58	}
    59	
    60	// TrailingZeros8 returns the number of trailing zero bits in x; the result is 8 for x == 0.
    61	func TrailingZeros8(x uint8) int {
    62		return int(ntz8tab[x])
    63	}
    64	
    65	// TrailingZeros16 returns the number of trailing zero bits in x; the result is 16 for x == 0.
    66	func TrailingZeros16(x uint16) int {
    67		if x == 0 {
    68			return 16
    69		}
    70		// see comment in TrailingZeros64
    71		return int(deBruijn32tab[uint32(x&-x)*deBruijn32>>(32-5)])
    72	}
    73	
    74	// TrailingZeros32 returns the number of trailing zero bits in x; the result is 32 for x == 0.
    75	func TrailingZeros32(x uint32) int {
    76		if x == 0 {
    77			return 32
    78		}
    79		// see comment in TrailingZeros64
    80		return int(deBruijn32tab[(x&-x)*deBruijn32>>(32-5)])
    81	}
    82	
    83	// TrailingZeros64 returns the number of trailing zero bits in x; the result is 64 for x == 0.
    84	func TrailingZeros64(x uint64) int {
    85		if x == 0 {
    86			return 64
    87		}
    88		// If popcount is fast, replace code below with return popcount(^x & (x - 1)).
    89		//
    90		// x & -x leaves only the right-most bit set in the word. Let k be the
    91		// index of that bit. Since only a single bit is set, the value is two
    92		// to the power of k. Multiplying by a power of two is equivalent to
    93		// left shifting, in this case by k bits. The de Bruijn (64 bit) constant
    94		// is such that all six bit, consecutive substrings are distinct.
    95		// Therefore, if we have a left shifted version of this constant we can
    96		// find by how many bits it was shifted by looking at which six bit
    97		// substring ended up at the top of the word.
    98		// (Knuth, volume 4, section 7.3.1)
    99		return int(deBruijn64tab[(x&-x)*deBruijn64>>(64-6)])
   100	}
   101	
   102	// --- OnesCount ---
   103	
   104	const m0 = 0x5555555555555555 // 01010101 ...
   105	const m1 = 0x3333333333333333 // 00110011 ...
   106	const m2 = 0x0f0f0f0f0f0f0f0f // 00001111 ...
   107	const m3 = 0x00ff00ff00ff00ff // etc.
   108	const m4 = 0x0000ffff0000ffff
   109	
   110	// OnesCount returns the number of one bits ("population count") in x.
   111	func OnesCount(x uint) int {
   112		if UintSize == 32 {
   113			return OnesCount32(uint32(x))
   114		}
   115		return OnesCount64(uint64(x))
   116	}
   117	
   118	// OnesCount8 returns the number of one bits ("population count") in x.
   119	func OnesCount8(x uint8) int {
   120		return int(pop8tab[x])
   121	}
   122	
   123	// OnesCount16 returns the number of one bits ("population count") in x.
   124	func OnesCount16(x uint16) int {
   125		return int(pop8tab[x>>8] + pop8tab[x&0xff])
   126	}
   127	
   128	// OnesCount32 returns the number of one bits ("population count") in x.
   129	func OnesCount32(x uint32) int {
   130		return int(pop8tab[x>>24] + pop8tab[x>>16&0xff] + pop8tab[x>>8&0xff] + pop8tab[x&0xff])
   131	}
   132	
   133	// OnesCount64 returns the number of one bits ("population count") in x.
   134	func OnesCount64(x uint64) int {
   135		// Implementation: Parallel summing of adjacent bits.
   136		// See "Hacker's Delight", Chap. 5: Counting Bits.
   137		// The following pattern shows the general approach:
   138		//
   139		//   x = x>>1&(m0&m) + x&(m0&m)
   140		//   x = x>>2&(m1&m) + x&(m1&m)
   141		//   x = x>>4&(m2&m) + x&(m2&m)
   142		//   x = x>>8&(m3&m) + x&(m3&m)
   143		//   x = x>>16&(m4&m) + x&(m4&m)
   144		//   x = x>>32&(m5&m) + x&(m5&m)
   145		//   return int(x)
   146		//
   147		// Masking (& operations) can be left away when there's no
   148		// danger that a field's sum will carry over into the next
   149		// field: Since the result cannot be > 64, 8 bits is enough
   150		// and we can ignore the masks for the shifts by 8 and up.
   151		// Per "Hacker's Delight", the first line can be simplified
   152		// more, but it saves at best one instruction, so we leave
   153		// it alone for clarity.
   154		const m = 1<<64 - 1
   155		x = x>>1&(m0&m) + x&(m0&m)
   156		x = x>>2&(m1&m) + x&(m1&m)
   157		x = (x>>4 + x) & (m2 & m)
   158		x += x >> 8
   159		x += x >> 16
   160		x += x >> 32
   161		return int(x) & (1<<7 - 1)
   162	}
   163	
   164	// --- RotateLeft ---
   165	
   166	// RotateLeft returns the value of x rotated left by (k mod UintSize) bits.
   167	// To rotate x right by k bits, call RotateLeft(x, -k).
   168	//
   169	// This function's execution time does not depend on the inputs.
   170	func RotateLeft(x uint, k int) uint {
   171		if UintSize == 32 {
   172			return uint(RotateLeft32(uint32(x), k))
   173		}
   174		return uint(RotateLeft64(uint64(x), k))
   175	}
   176	
   177	// RotateLeft8 returns the value of x rotated left by (k mod 8) bits.
   178	// To rotate x right by k bits, call RotateLeft8(x, -k).
   179	//
   180	// This function's execution time does not depend on the inputs.
   181	func RotateLeft8(x uint8, k int) uint8 {
   182		const n = 8
   183		s := uint(k) & (n - 1)
   184		return x<<s | x>>(n-s)
   185	}
   186	
   187	// RotateLeft16 returns the value of x rotated left by (k mod 16) bits.
   188	// To rotate x right by k bits, call RotateLeft16(x, -k).
   189	//
   190	// This function's execution time does not depend on the inputs.
   191	func RotateLeft16(x uint16, k int) uint16 {
   192		const n = 16
   193		s := uint(k) & (n - 1)
   194		return x<<s | x>>(n-s)
   195	}
   196	
   197	// RotateLeft32 returns the value of x rotated left by (k mod 32) bits.
   198	// To rotate x right by k bits, call RotateLeft32(x, -k).
   199	//
   200	// This function's execution time does not depend on the inputs.
   201	func RotateLeft32(x uint32, k int) uint32 {
   202		const n = 32
   203		s := uint(k) & (n - 1)
   204		return x<<s | x>>(n-s)
   205	}
   206	
   207	// RotateLeft64 returns the value of x rotated left by (k mod 64) bits.
   208	// To rotate x right by k bits, call RotateLeft64(x, -k).
   209	//
   210	// This function's execution time does not depend on the inputs.
   211	func RotateLeft64(x uint64, k int) uint64 {
   212		const n = 64
   213		s := uint(k) & (n - 1)
   214		return x<<s | x>>(n-s)
   215	}
   216	
   217	// --- Reverse ---
   218	
   219	// Reverse returns the value of x with its bits in reversed order.
   220	func Reverse(x uint) uint {
   221		if UintSize == 32 {
   222			return uint(Reverse32(uint32(x)))
   223		}
   224		return uint(Reverse64(uint64(x)))
   225	}
   226	
   227	// Reverse8 returns the value of x with its bits in reversed order.
   228	func Reverse8(x uint8) uint8 {
   229		return rev8tab[x]
   230	}
   231	
   232	// Reverse16 returns the value of x with its bits in reversed order.
   233	func Reverse16(x uint16) uint16 {
   234		return uint16(rev8tab[x>>8]) | uint16(rev8tab[x&0xff])<<8
   235	}
   236	
   237	// Reverse32 returns the value of x with its bits in reversed order.
   238	func Reverse32(x uint32) uint32 {
   239		const m = 1<<32 - 1
   240		x = x>>1&(m0&m) | x&(m0&m)<<1
   241		x = x>>2&(m1&m) | x&(m1&m)<<2
   242		x = x>>4&(m2&m) | x&(m2&m)<<4
   243		return ReverseBytes32(x)
   244	}
   245	
   246	// Reverse64 returns the value of x with its bits in reversed order.
   247	func Reverse64(x uint64) uint64 {
   248		const m = 1<<64 - 1
   249		x = x>>1&(m0&m) | x&(m0&m)<<1
   250		x = x>>2&(m1&m) | x&(m1&m)<<2
   251		x = x>>4&(m2&m) | x&(m2&m)<<4
   252		return ReverseBytes64(x)
   253	}
   254	
   255	// --- ReverseBytes ---
   256	
   257	// ReverseBytes returns the value of x with its bytes in reversed order.
   258	//
   259	// This function's execution time does not depend on the inputs.
   260	func ReverseBytes(x uint) uint {
   261		if UintSize == 32 {
   262			return uint(ReverseBytes32(uint32(x)))
   263		}
   264		return uint(ReverseBytes64(uint64(x)))
   265	}
   266	
   267	// ReverseBytes16 returns the value of x with its bytes in reversed order.
   268	//
   269	// This function's execution time does not depend on the inputs.
   270	func ReverseBytes16(x uint16) uint16 {
   271		return x>>8 | x<<8
   272	}
   273	
   274	// ReverseBytes32 returns the value of x with its bytes in reversed order.
   275	//
   276	// This function's execution time does not depend on the inputs.
   277	func ReverseBytes32(x uint32) uint32 {
   278		const m = 1<<32 - 1
   279		x = x>>8&(m3&m) | x&(m3&m)<<8
   280		return x>>16 | x<<16
   281	}
   282	
   283	// ReverseBytes64 returns the value of x with its bytes in reversed order.
   284	//
   285	// This function's execution time does not depend on the inputs.
   286	func ReverseBytes64(x uint64) uint64 {
   287		const m = 1<<64 - 1
   288		x = x>>8&(m3&m) | x&(m3&m)<<8
   289		x = x>>16&(m4&m) | x&(m4&m)<<16
   290		return x>>32 | x<<32
   291	}
   292	
   293	// --- Len ---
   294	
   295	// Len returns the minimum number of bits required to represent x; the result is 0 for x == 0.
   296	func Len(x uint) int {
   297		if UintSize == 32 {
   298			return Len32(uint32(x))
   299		}
   300		return Len64(uint64(x))
   301	}
   302	
   303	// Len8 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
   304	func Len8(x uint8) int {
   305		return int(len8tab[x])
   306	}
   307	
   308	// Len16 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
   309	func Len16(x uint16) (n int) {
   310		if x >= 1<<8 {
   311			x >>= 8
   312			n = 8
   313		}
   314		return n + int(len8tab[x])
   315	}
   316	
   317	// Len32 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
   318	func Len32(x uint32) (n int) {
   319		if x >= 1<<16 {
   320			x >>= 16
   321			n = 16
   322		}
   323		if x >= 1<<8 {
   324			x >>= 8
   325			n += 8
   326		}
   327		return n + int(len8tab[x])
   328	}
   329	
   330	// Len64 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
   331	func Len64(x uint64) (n int) {
   332		if x >= 1<<32 {
   333			x >>= 32
   334			n = 32
   335		}
   336		if x >= 1<<16 {
   337			x >>= 16
   338			n += 16
   339		}
   340		if x >= 1<<8 {
   341			x >>= 8
   342			n += 8
   343		}
   344		return n + int(len8tab[x])
   345	}
   346	
   347	// --- Add with carry ---
   348	
   349	// Add returns the sum with carry of x, y and carry: sum = x + y + carry.
   350	// The carry input must be 0 or 1; otherwise the behavior is undefined.
   351	// The carryOut output is guaranteed to be 0 or 1.
   352	//
   353	// This function's execution time does not depend on the inputs.
   354	func Add(x, y, carry uint) (sum, carryOut uint) {
   355		if UintSize == 32 {
   356			s32, c32 := Add32(uint32(x), uint32(y), uint32(carry))
   357			return uint(s32), uint(c32)
   358		}
   359		s64, c64 := Add64(uint64(x), uint64(y), uint64(carry))
   360		return uint(s64), uint(c64)
   361	}
   362	
   363	// Add32 returns the sum with carry of x, y and carry: sum = x + y + carry.
   364	// The carry input must be 0 or 1; otherwise the behavior is undefined.
   365	// The carryOut output is guaranteed to be 0 or 1.
   366	//
   367	// This function's execution time does not depend on the inputs.
   368	func Add32(x, y, carry uint32) (sum, carryOut uint32) {
   369		sum64 := uint64(x) + uint64(y) + uint64(carry)
   370		sum = uint32(sum64)
   371		carryOut = uint32(sum64 >> 32)
   372		return
   373	}
   374	
   375	// Add64 returns the sum with carry of x, y and carry: sum = x + y + carry.
   376	// The carry input must be 0 or 1; otherwise the behavior is undefined.
   377	// The carryOut output is guaranteed to be 0 or 1.
   378	//
   379	// This function's execution time does not depend on the inputs.
   380	func Add64(x, y, carry uint64) (sum, carryOut uint64) {
   381		sum = x + y + carry
   382		// The sum will overflow if both top bits are set (x & y) or if one of them
   383		// is (x | y), and a carry from the lower place happened. If such a carry
   384		// happens, the top bit will be 1 + 0 + 1 = 0 (&^ sum).
   385		carryOut = ((x & y) | ((x | y) &^ sum)) >> 63
   386		return
   387	}
   388	
   389	// --- Subtract with borrow ---
   390	
   391	// Sub returns the difference of x, y and borrow: diff = x - y - borrow.
   392	// The borrow input must be 0 or 1; otherwise the behavior is undefined.
   393	// The borrowOut output is guaranteed to be 0 or 1.
   394	//
   395	// This function's execution time does not depend on the inputs.
   396	func Sub(x, y, borrow uint) (diff, borrowOut uint) {
   397		if UintSize == 32 {
   398			d32, b32 := Sub32(uint32(x), uint32(y), uint32(borrow))
   399			return uint(d32), uint(b32)
   400		}
   401		d64, b64 := Sub64(uint64(x), uint64(y), uint64(borrow))
   402		return uint(d64), uint(b64)
   403	}
   404	
   405	// Sub32 returns the difference of x, y and borrow, diff = x - y - borrow.
   406	// The borrow input must be 0 or 1; otherwise the behavior is undefined.
   407	// The borrowOut output is guaranteed to be 0 or 1.
   408	//
   409	// This function's execution time does not depend on the inputs.
   410	func Sub32(x, y, borrow uint32) (diff, borrowOut uint32) {
   411		diff = x - y - borrow
   412		// The difference will underflow if the top bit of x is not set and the top
   413		// bit of y is set (^x & y) or if they are the same (^(x ^ y)) and a borrow
   414		// from the lower place happens. If that borrow happens, the result will be
   415		// 1 - 1 - 1 = 0 - 0 - 1 = 1 (& diff).
   416		borrowOut = ((^x & y) | (^(x ^ y) & diff)) >> 31
   417		return
   418	}
   419	
   420	// Sub64 returns the difference of x, y and borrow: diff = x - y - borrow.
   421	// The borrow input must be 0 or 1; otherwise the behavior is undefined.
   422	// The borrowOut output is guaranteed to be 0 or 1.
   423	//
   424	// This function's execution time does not depend on the inputs.
   425	func Sub64(x, y, borrow uint64) (diff, borrowOut uint64) {
   426		diff = x - y - borrow
   427		// See Sub32 for the bit logic.
   428		borrowOut = ((^x & y) | (^(x ^ y) & diff)) >> 63
   429		return
   430	}
   431	
   432	// --- Full-width multiply ---
   433	
   434	// Mul returns the full-width product of x and y: (hi, lo) = x * y
   435	// with the product bits' upper half returned in hi and the lower
   436	// half returned in lo.
   437	//
   438	// This function's execution time does not depend on the inputs.
   439	func Mul(x, y uint) (hi, lo uint) {
   440		if UintSize == 32 {
   441			h, l := Mul32(uint32(x), uint32(y))
   442			return uint(h), uint(l)
   443		}
   444		h, l := Mul64(uint64(x), uint64(y))
   445		return uint(h), uint(l)
   446	}
   447	
   448	// Mul32 returns the 64-bit product of x and y: (hi, lo) = x * y
   449	// with the product bits' upper half returned in hi and the lower
   450	// half returned in lo.
   451	//
   452	// This function's execution time does not depend on the inputs.
   453	func Mul32(x, y uint32) (hi, lo uint32) {
   454		tmp := uint64(x) * uint64(y)
   455		hi, lo = uint32(tmp>>32), uint32(tmp)
   456		return
   457	}
   458	
   459	// Mul64 returns the 128-bit product of x and y: (hi, lo) = x * y
   460	// with the product bits' upper half returned in hi and the lower
   461	// half returned in lo.
   462	//
   463	// This function's execution time does not depend on the inputs.
   464	func Mul64(x, y uint64) (hi, lo uint64) {
   465		const mask32 = 1<<32 - 1
   466		x0 := x & mask32
   467		x1 := x >> 32
   468		y0 := y & mask32
   469		y1 := y >> 32
   470		w0 := x0 * y0
   471		t := x1*y0 + w0>>32
   472		w1 := t & mask32
   473		w2 := t >> 32
   474		w1 += x0 * y1
   475		hi = x1*y1 + w2 + w1>>32
   476		lo = x * y
   477		return
   478	}
   479	
   480	// --- Full-width divide ---
   481	
   482	// Div returns the quotient and remainder of (hi, lo) divided by y:
   483	// quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper
   484	// half in parameter hi and the lower half in parameter lo.
   485	// Div panics for y == 0 (division by zero) or y <= hi (quotient overflow).
   486	func Div(hi, lo, y uint) (quo, rem uint) {
   487		if UintSize == 32 {
   488			q, r := Div32(uint32(hi), uint32(lo), uint32(y))
   489			return uint(q), uint(r)
   490		}
   491		q, r := Div64(uint64(hi), uint64(lo), uint64(y))
   492		return uint(q), uint(r)
   493	}
   494	
   495	// Div32 returns the quotient and remainder of (hi, lo) divided by y:
   496	// quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper
   497	// half in parameter hi and the lower half in parameter lo.
   498	// Div32 panics for y == 0 (division by zero) or y <= hi (quotient overflow).
   499	func Div32(hi, lo, y uint32) (quo, rem uint32) {
   500		if y != 0 && y <= hi {
   501			panic(overflowError)
   502		}
   503		z := uint64(hi)<<32 | uint64(lo)
   504		quo, rem = uint32(z/uint64(y)), uint32(z%uint64(y))
   505		return
   506	}
   507	
   508	// Div64 returns the quotient and remainder of (hi, lo) divided by y:
   509	// quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper
   510	// half in parameter hi and the lower half in parameter lo.
   511	// Div64 panics for y == 0 (division by zero) or y <= hi (quotient overflow).
   512	func Div64(hi, lo, y uint64) (quo, rem uint64) {
   513		const (
   514			two32  = 1 << 32
   515			mask32 = two32 - 1
   516		)
   517		if y == 0 {
   518			panic(divideError)
   519		}
   520		if y <= hi {
   521			panic(overflowError)
   522		}
   523	
   524		s := uint(LeadingZeros64(y))
   525		y <<= s
   526	
   527		yn1 := y >> 32
   528		yn0 := y & mask32
   529		un32 := hi<<s | lo>>(64-s)
   530		un10 := lo << s
   531		un1 := un10 >> 32
   532		un0 := un10 & mask32
   533		q1 := un32 / yn1
   534		rhat := un32 - q1*yn1
   535	
   536		for q1 >= two32 || q1*yn0 > two32*rhat+un1 {
   537			q1--
   538			rhat += yn1
   539			if rhat >= two32 {
   540				break
   541			}
   542		}
   543	
   544		un21 := un32*two32 + un1 - q1*y
   545		q0 := un21 / yn1
   546		rhat = un21 - q0*yn1
   547	
   548		for q0 >= two32 || q0*yn0 > two32*rhat+un0 {
   549			q0--
   550			rhat += yn1
   551			if rhat >= two32 {
   552				break
   553			}
   554		}
   555	
   556		return q1*two32 + q0, (un21*two32 + un0 - q0*y) >> s
   557	}
   558	

View as plain text