...

Source file src/pkg/image/jpeg/idct.go

     1	// Copyright 2009 The Go Authors. All rights reserved.
     2	// Use of this source code is governed by a BSD-style
     3	// license that can be found in the LICENSE file.
     4	
     5	package jpeg
     6	
     7	// This is a Go translation of idct.c from
     8	//
     9	// http://standards.iso.org/ittf/PubliclyAvailableStandards/ISO_IEC_13818-4_2004_Conformance_Testing/Video/verifier/mpeg2decode_960109.tar.gz
    10	//
    11	// which carries the following notice:
    12	
    13	/* Copyright (C) 1996, MPEG Software Simulation Group. All Rights Reserved. */
    14	
    15	/*
    16	 * Disclaimer of Warranty
    17	 *
    18	 * These software programs are available to the user without any license fee or
    19	 * royalty on an "as is" basis.  The MPEG Software Simulation Group disclaims
    20	 * any and all warranties, whether express, implied, or statuary, including any
    21	 * implied warranties or merchantability or of fitness for a particular
    22	 * purpose.  In no event shall the copyright-holder be liable for any
    23	 * incidental, punitive, or consequential damages of any kind whatsoever
    24	 * arising from the use of these programs.
    25	 *
    26	 * This disclaimer of warranty extends to the user of these programs and user's
    27	 * customers, employees, agents, transferees, successors, and assigns.
    28	 *
    29	 * The MPEG Software Simulation Group does not represent or warrant that the
    30	 * programs furnished hereunder are free of infringement of any third-party
    31	 * patents.
    32	 *
    33	 * Commercial implementations of MPEG-1 and MPEG-2 video, including shareware,
    34	 * are subject to royalty fees to patent holders.  Many of these patents are
    35	 * general enough such that they are unavoidable regardless of implementation
    36	 * design.
    37	 *
    38	 */
    39	
    40	const blockSize = 64 // A DCT block is 8x8.
    41	
    42	type block [blockSize]int32
    43	
    44	const (
    45		w1 = 2841 // 2048*sqrt(2)*cos(1*pi/16)
    46		w2 = 2676 // 2048*sqrt(2)*cos(2*pi/16)
    47		w3 = 2408 // 2048*sqrt(2)*cos(3*pi/16)
    48		w5 = 1609 // 2048*sqrt(2)*cos(5*pi/16)
    49		w6 = 1108 // 2048*sqrt(2)*cos(6*pi/16)
    50		w7 = 565  // 2048*sqrt(2)*cos(7*pi/16)
    51	
    52		w1pw7 = w1 + w7
    53		w1mw7 = w1 - w7
    54		w2pw6 = w2 + w6
    55		w2mw6 = w2 - w6
    56		w3pw5 = w3 + w5
    57		w3mw5 = w3 - w5
    58	
    59		r2 = 181 // 256/sqrt(2)
    60	)
    61	
    62	// idct performs a 2-D Inverse Discrete Cosine Transformation.
    63	//
    64	// The input coefficients should already have been multiplied by the
    65	// appropriate quantization table. We use fixed-point computation, with the
    66	// number of bits for the fractional component varying over the intermediate
    67	// stages.
    68	//
    69	// For more on the actual algorithm, see Z. Wang, "Fast algorithms for the
    70	// discrete W transform and for the discrete Fourier transform", IEEE Trans. on
    71	// ASSP, Vol. ASSP- 32, pp. 803-816, Aug. 1984.
    72	func idct(src *block) {
    73		// Horizontal 1-D IDCT.
    74		for y := 0; y < 8; y++ {
    75			y8 := y * 8
    76			s := src[y8 : y8+8 : y8+8] // Small cap improves performance, see https://golang.org/issue/27857
    77			// If all the AC components are zero, then the IDCT is trivial.
    78			if s[1] == 0 && s[2] == 0 && s[3] == 0 &&
    79				s[4] == 0 && s[5] == 0 && s[6] == 0 && s[7] == 0 {
    80				dc := s[0] << 3
    81				s[0] = dc
    82				s[1] = dc
    83				s[2] = dc
    84				s[3] = dc
    85				s[4] = dc
    86				s[5] = dc
    87				s[6] = dc
    88				s[7] = dc
    89				continue
    90			}
    91	
    92			// Prescale.
    93			x0 := (s[0] << 11) + 128
    94			x1 := s[4] << 11
    95			x2 := s[6]
    96			x3 := s[2]
    97			x4 := s[1]
    98			x5 := s[7]
    99			x6 := s[5]
   100			x7 := s[3]
   101	
   102			// Stage 1.
   103			x8 := w7 * (x4 + x5)
   104			x4 = x8 + w1mw7*x4
   105			x5 = x8 - w1pw7*x5
   106			x8 = w3 * (x6 + x7)
   107			x6 = x8 - w3mw5*x6
   108			x7 = x8 - w3pw5*x7
   109	
   110			// Stage 2.
   111			x8 = x0 + x1
   112			x0 -= x1
   113			x1 = w6 * (x3 + x2)
   114			x2 = x1 - w2pw6*x2
   115			x3 = x1 + w2mw6*x3
   116			x1 = x4 + x6
   117			x4 -= x6
   118			x6 = x5 + x7
   119			x5 -= x7
   120	
   121			// Stage 3.
   122			x7 = x8 + x3
   123			x8 -= x3
   124			x3 = x0 + x2
   125			x0 -= x2
   126			x2 = (r2*(x4+x5) + 128) >> 8
   127			x4 = (r2*(x4-x5) + 128) >> 8
   128	
   129			// Stage 4.
   130			s[0] = (x7 + x1) >> 8
   131			s[1] = (x3 + x2) >> 8
   132			s[2] = (x0 + x4) >> 8
   133			s[3] = (x8 + x6) >> 8
   134			s[4] = (x8 - x6) >> 8
   135			s[5] = (x0 - x4) >> 8
   136			s[6] = (x3 - x2) >> 8
   137			s[7] = (x7 - x1) >> 8
   138		}
   139	
   140		// Vertical 1-D IDCT.
   141		for x := 0; x < 8; x++ {
   142			// Similar to the horizontal 1-D IDCT case, if all the AC components are zero, then the IDCT is trivial.
   143			// However, after performing the horizontal 1-D IDCT, there are typically non-zero AC components, so
   144			// we do not bother to check for the all-zero case.
   145			s := src[x : x+57 : x+57] // Small cap improves performance, see https://golang.org/issue/27857
   146	
   147			// Prescale.
   148			y0 := (s[8*0] << 8) + 8192
   149			y1 := s[8*4] << 8
   150			y2 := s[8*6]
   151			y3 := s[8*2]
   152			y4 := s[8*1]
   153			y5 := s[8*7]
   154			y6 := s[8*5]
   155			y7 := s[8*3]
   156	
   157			// Stage 1.
   158			y8 := w7*(y4+y5) + 4
   159			y4 = (y8 + w1mw7*y4) >> 3
   160			y5 = (y8 - w1pw7*y5) >> 3
   161			y8 = w3*(y6+y7) + 4
   162			y6 = (y8 - w3mw5*y6) >> 3
   163			y7 = (y8 - w3pw5*y7) >> 3
   164	
   165			// Stage 2.
   166			y8 = y0 + y1
   167			y0 -= y1
   168			y1 = w6*(y3+y2) + 4
   169			y2 = (y1 - w2pw6*y2) >> 3
   170			y3 = (y1 + w2mw6*y3) >> 3
   171			y1 = y4 + y6
   172			y4 -= y6
   173			y6 = y5 + y7
   174			y5 -= y7
   175	
   176			// Stage 3.
   177			y7 = y8 + y3
   178			y8 -= y3
   179			y3 = y0 + y2
   180			y0 -= y2
   181			y2 = (r2*(y4+y5) + 128) >> 8
   182			y4 = (r2*(y4-y5) + 128) >> 8
   183	
   184			// Stage 4.
   185			s[8*0] = (y7 + y1) >> 14
   186			s[8*1] = (y3 + y2) >> 14
   187			s[8*2] = (y0 + y4) >> 14
   188			s[8*3] = (y8 + y6) >> 14
   189			s[8*4] = (y8 - y6) >> 14
   190			s[8*5] = (y0 - y4) >> 14
   191			s[8*6] = (y3 - y2) >> 14
   192			s[8*7] = (y7 - y1) >> 14
   193		}
   194	}
   195	

View as plain text