...

Source file src/pkg/image/color/ycbcr.go

     1	// Copyright 2011 The Go Authors. All rights reserved.
     2	// Use of this source code is governed by a BSD-style
     3	// license that can be found in the LICENSE file.
     4	
     5	package color
     6	
     7	// RGBToYCbCr converts an RGB triple to a Y'CbCr triple.
     8	func RGBToYCbCr(r, g, b uint8) (uint8, uint8, uint8) {
     9		// The JFIF specification says:
    10		//	Y' =  0.2990*R + 0.5870*G + 0.1140*B
    11		//	Cb = -0.1687*R - 0.3313*G + 0.5000*B + 128
    12		//	Cr =  0.5000*R - 0.4187*G - 0.0813*B + 128
    13		// https://www.w3.org/Graphics/JPEG/jfif3.pdf says Y but means Y'.
    14	
    15		r1 := int32(r)
    16		g1 := int32(g)
    17		b1 := int32(b)
    18	
    19		// yy is in range [0,0xff].
    20		//
    21		// Note that 19595 + 38470 + 7471 equals 65536.
    22		yy := (19595*r1 + 38470*g1 + 7471*b1 + 1<<15) >> 16
    23	
    24		// The bit twiddling below is equivalent to
    25		//
    26		// cb := (-11056*r1 - 21712*g1 + 32768*b1 + 257<<15) >> 16
    27		// if cb < 0 {
    28		//     cb = 0
    29		// } else if cb > 0xff {
    30		//     cb = ^int32(0)
    31		// }
    32		//
    33		// but uses fewer branches and is faster.
    34		// Note that the uint8 type conversion in the return
    35		// statement will convert ^int32(0) to 0xff.
    36		// The code below to compute cr uses a similar pattern.
    37		//
    38		// Note that -11056 - 21712 + 32768 equals 0.
    39		cb := -11056*r1 - 21712*g1 + 32768*b1 + 257<<15
    40		if uint32(cb)&0xff000000 == 0 {
    41			cb >>= 16
    42		} else {
    43			cb = ^(cb >> 31)
    44		}
    45	
    46		// Note that 32768 - 27440 - 5328 equals 0.
    47		cr := 32768*r1 - 27440*g1 - 5328*b1 + 257<<15
    48		if uint32(cr)&0xff000000 == 0 {
    49			cr >>= 16
    50		} else {
    51			cr = ^(cr >> 31)
    52		}
    53	
    54		return uint8(yy), uint8(cb), uint8(cr)
    55	}
    56	
    57	// YCbCrToRGB converts a Y'CbCr triple to an RGB triple.
    58	func YCbCrToRGB(y, cb, cr uint8) (uint8, uint8, uint8) {
    59		// The JFIF specification says:
    60		//	R = Y' + 1.40200*(Cr-128)
    61		//	G = Y' - 0.34414*(Cb-128) - 0.71414*(Cr-128)
    62		//	B = Y' + 1.77200*(Cb-128)
    63		// https://www.w3.org/Graphics/JPEG/jfif3.pdf says Y but means Y'.
    64		//
    65		// Those formulae use non-integer multiplication factors. When computing,
    66		// integer math is generally faster than floating point math. We multiply
    67		// all of those factors by 1<<16 and round to the nearest integer:
    68		//	 91881 = roundToNearestInteger(1.40200 * 65536).
    69		//	 22554 = roundToNearestInteger(0.34414 * 65536).
    70		//	 46802 = roundToNearestInteger(0.71414 * 65536).
    71		//	116130 = roundToNearestInteger(1.77200 * 65536).
    72		//
    73		// Adding a rounding adjustment in the range [0, 1<<16-1] and then shifting
    74		// right by 16 gives us an integer math version of the original formulae.
    75		//	R = (65536*Y' +  91881 *(Cr-128)                  + adjustment) >> 16
    76		//	G = (65536*Y' -  22554 *(Cb-128) - 46802*(Cr-128) + adjustment) >> 16
    77		//	B = (65536*Y' + 116130 *(Cb-128)                  + adjustment) >> 16
    78		// A constant rounding adjustment of 1<<15, one half of 1<<16, would mean
    79		// round-to-nearest when dividing by 65536 (shifting right by 16).
    80		// Similarly, a constant rounding adjustment of 0 would mean round-down.
    81		//
    82		// Defining YY1 = 65536*Y' + adjustment simplifies the formulae and
    83		// requires fewer CPU operations:
    84		//	R = (YY1 +  91881 *(Cr-128)                 ) >> 16
    85		//	G = (YY1 -  22554 *(Cb-128) - 46802*(Cr-128)) >> 16
    86		//	B = (YY1 + 116130 *(Cb-128)                 ) >> 16
    87		//
    88		// The inputs (y, cb, cr) are 8 bit color, ranging in [0x00, 0xff]. In this
    89		// function, the output is also 8 bit color, but in the related YCbCr.RGBA
    90		// method, below, the output is 16 bit color, ranging in [0x0000, 0xffff].
    91		// Outputting 16 bit color simply requires changing the 16 to 8 in the "R =
    92		// etc >> 16" equation, and likewise for G and B.
    93		//
    94		// As mentioned above, a constant rounding adjustment of 1<<15 is a natural
    95		// choice, but there is an additional constraint: if c0 := YCbCr{Y: y, Cb:
    96		// 0x80, Cr: 0x80} and c1 := Gray{Y: y} then c0.RGBA() should equal
    97		// c1.RGBA(). Specifically, if y == 0 then "R = etc >> 8" should yield
    98		// 0x0000 and if y == 0xff then "R = etc >> 8" should yield 0xffff. If we
    99		// used a constant rounding adjustment of 1<<15, then it would yield 0x0080
   100		// and 0xff80 respectively.
   101		//
   102		// Note that when cb == 0x80 and cr == 0x80 then the formulae collapse to:
   103		//	R = YY1 >> n
   104		//	G = YY1 >> n
   105		//	B = YY1 >> n
   106		// where n is 16 for this function (8 bit color output) and 8 for the
   107		// YCbCr.RGBA method (16 bit color output).
   108		//
   109		// The solution is to make the rounding adjustment non-constant, and equal
   110		// to 257*Y', which ranges over [0, 1<<16-1] as Y' ranges over [0, 255].
   111		// YY1 is then defined as:
   112		//	YY1 = 65536*Y' + 257*Y'
   113		// or equivalently:
   114		//	YY1 = Y' * 0x10101
   115		yy1 := int32(y) * 0x10101
   116		cb1 := int32(cb) - 128
   117		cr1 := int32(cr) - 128
   118	
   119		// The bit twiddling below is equivalent to
   120		//
   121		// r := (yy1 + 91881*cr1) >> 16
   122		// if r < 0 {
   123		//     r = 0
   124		// } else if r > 0xff {
   125		//     r = ^int32(0)
   126		// }
   127		//
   128		// but uses fewer branches and is faster.
   129		// Note that the uint8 type conversion in the return
   130		// statement will convert ^int32(0) to 0xff.
   131		// The code below to compute g and b uses a similar pattern.
   132		r := yy1 + 91881*cr1
   133		if uint32(r)&0xff000000 == 0 {
   134			r >>= 16
   135		} else {
   136			r = ^(r >> 31)
   137		}
   138	
   139		g := yy1 - 22554*cb1 - 46802*cr1
   140		if uint32(g)&0xff000000 == 0 {
   141			g >>= 16
   142		} else {
   143			g = ^(g >> 31)
   144		}
   145	
   146		b := yy1 + 116130*cb1
   147		if uint32(b)&0xff000000 == 0 {
   148			b >>= 16
   149		} else {
   150			b = ^(b >> 31)
   151		}
   152	
   153		return uint8(r), uint8(g), uint8(b)
   154	}
   155	
   156	// YCbCr represents a fully opaque 24-bit Y'CbCr color, having 8 bits each for
   157	// one luma and two chroma components.
   158	//
   159	// JPEG, VP8, the MPEG family and other codecs use this color model. Such
   160	// codecs often use the terms YUV and Y'CbCr interchangeably, but strictly
   161	// speaking, the term YUV applies only to analog video signals, and Y' (luma)
   162	// is Y (luminance) after applying gamma correction.
   163	//
   164	// Conversion between RGB and Y'CbCr is lossy and there are multiple, slightly
   165	// different formulae for converting between the two. This package follows
   166	// the JFIF specification at https://www.w3.org/Graphics/JPEG/jfif3.pdf.
   167	type YCbCr struct {
   168		Y, Cb, Cr uint8
   169	}
   170	
   171	func (c YCbCr) RGBA() (uint32, uint32, uint32, uint32) {
   172		// This code is a copy of the YCbCrToRGB function above, except that it
   173		// returns values in the range [0, 0xffff] instead of [0, 0xff]. There is a
   174		// subtle difference between doing this and having YCbCr satisfy the Color
   175		// interface by first converting to an RGBA. The latter loses some
   176		// information by going to and from 8 bits per channel.
   177		//
   178		// For example, this code:
   179		//	const y, cb, cr = 0x7f, 0x7f, 0x7f
   180		//	r, g, b := color.YCbCrToRGB(y, cb, cr)
   181		//	r0, g0, b0, _ := color.YCbCr{y, cb, cr}.RGBA()
   182		//	r1, g1, b1, _ := color.RGBA{r, g, b, 0xff}.RGBA()
   183		//	fmt.Printf("0x%04x 0x%04x 0x%04x\n", r0, g0, b0)
   184		//	fmt.Printf("0x%04x 0x%04x 0x%04x\n", r1, g1, b1)
   185		// prints:
   186		//	0x7e18 0x808d 0x7db9
   187		//	0x7e7e 0x8080 0x7d7d
   188	
   189		yy1 := int32(c.Y) * 0x10101
   190		cb1 := int32(c.Cb) - 128
   191		cr1 := int32(c.Cr) - 128
   192	
   193		// The bit twiddling below is equivalent to
   194		//
   195		// r := (yy1 + 91881*cr1) >> 8
   196		// if r < 0 {
   197		//     r = 0
   198		// } else if r > 0xff {
   199		//     r = 0xffff
   200		// }
   201		//
   202		// but uses fewer branches and is faster.
   203		// The code below to compute g and b uses a similar pattern.
   204		r := yy1 + 91881*cr1
   205		if uint32(r)&0xff000000 == 0 {
   206			r >>= 8
   207		} else {
   208			r = ^(r >> 31) & 0xffff
   209		}
   210	
   211		g := yy1 - 22554*cb1 - 46802*cr1
   212		if uint32(g)&0xff000000 == 0 {
   213			g >>= 8
   214		} else {
   215			g = ^(g >> 31) & 0xffff
   216		}
   217	
   218		b := yy1 + 116130*cb1
   219		if uint32(b)&0xff000000 == 0 {
   220			b >>= 8
   221		} else {
   222			b = ^(b >> 31) & 0xffff
   223		}
   224	
   225		return uint32(r), uint32(g), uint32(b), 0xffff
   226	}
   227	
   228	// YCbCrModel is the Model for Y'CbCr colors.
   229	var YCbCrModel Model = ModelFunc(yCbCrModel)
   230	
   231	func yCbCrModel(c Color) Color {
   232		if _, ok := c.(YCbCr); ok {
   233			return c
   234		}
   235		r, g, b, _ := c.RGBA()
   236		y, u, v := RGBToYCbCr(uint8(r>>8), uint8(g>>8), uint8(b>>8))
   237		return YCbCr{y, u, v}
   238	}
   239	
   240	// NYCbCrA represents a non-alpha-premultiplied Y'CbCr-with-alpha color, having
   241	// 8 bits each for one luma, two chroma and one alpha component.
   242	type NYCbCrA struct {
   243		YCbCr
   244		A uint8
   245	}
   246	
   247	func (c NYCbCrA) RGBA() (uint32, uint32, uint32, uint32) {
   248		// The first part of this method is the same as YCbCr.RGBA.
   249		yy1 := int32(c.Y) * 0x10101
   250		cb1 := int32(c.Cb) - 128
   251		cr1 := int32(c.Cr) - 128
   252	
   253		// The bit twiddling below is equivalent to
   254		//
   255		// r := (yy1 + 91881*cr1) >> 8
   256		// if r < 0 {
   257		//     r = 0
   258		// } else if r > 0xff {
   259		//     r = 0xffff
   260		// }
   261		//
   262		// but uses fewer branches and is faster.
   263		// The code below to compute g and b uses a similar pattern.
   264		r := yy1 + 91881*cr1
   265		if uint32(r)&0xff000000 == 0 {
   266			r >>= 8
   267		} else {
   268			r = ^(r >> 31) & 0xffff
   269		}
   270	
   271		g := yy1 - 22554*cb1 - 46802*cr1
   272		if uint32(g)&0xff000000 == 0 {
   273			g >>= 8
   274		} else {
   275			g = ^(g >> 31) & 0xffff
   276		}
   277	
   278		b := yy1 + 116130*cb1
   279		if uint32(b)&0xff000000 == 0 {
   280			b >>= 8
   281		} else {
   282			b = ^(b >> 31) & 0xffff
   283		}
   284	
   285		// The second part of this method applies the alpha.
   286		a := uint32(c.A) * 0x101
   287		return uint32(r) * a / 0xffff, uint32(g) * a / 0xffff, uint32(b) * a / 0xffff, a
   288	}
   289	
   290	// NYCbCrAModel is the Model for non-alpha-premultiplied Y'CbCr-with-alpha
   291	// colors.
   292	var NYCbCrAModel Model = ModelFunc(nYCbCrAModel)
   293	
   294	func nYCbCrAModel(c Color) Color {
   295		switch c := c.(type) {
   296		case NYCbCrA:
   297			return c
   298		case YCbCr:
   299			return NYCbCrA{c, 0xff}
   300		}
   301		r, g, b, a := c.RGBA()
   302	
   303		// Convert from alpha-premultiplied to non-alpha-premultiplied.
   304		if a != 0 {
   305			r = (r * 0xffff) / a
   306			g = (g * 0xffff) / a
   307			b = (b * 0xffff) / a
   308		}
   309	
   310		y, u, v := RGBToYCbCr(uint8(r>>8), uint8(g>>8), uint8(b>>8))
   311		return NYCbCrA{YCbCr{Y: y, Cb: u, Cr: v}, uint8(a >> 8)}
   312	}
   313	
   314	// RGBToCMYK converts an RGB triple to a CMYK quadruple.
   315	func RGBToCMYK(r, g, b uint8) (uint8, uint8, uint8, uint8) {
   316		rr := uint32(r)
   317		gg := uint32(g)
   318		bb := uint32(b)
   319		w := rr
   320		if w < gg {
   321			w = gg
   322		}
   323		if w < bb {
   324			w = bb
   325		}
   326		if w == 0 {
   327			return 0, 0, 0, 0xff
   328		}
   329		c := (w - rr) * 0xff / w
   330		m := (w - gg) * 0xff / w
   331		y := (w - bb) * 0xff / w
   332		return uint8(c), uint8(m), uint8(y), uint8(0xff - w)
   333	}
   334	
   335	// CMYKToRGB converts a CMYK quadruple to an RGB triple.
   336	func CMYKToRGB(c, m, y, k uint8) (uint8, uint8, uint8) {
   337		w := 0xffff - uint32(k)*0x101
   338		r := (0xffff - uint32(c)*0x101) * w / 0xffff
   339		g := (0xffff - uint32(m)*0x101) * w / 0xffff
   340		b := (0xffff - uint32(y)*0x101) * w / 0xffff
   341		return uint8(r >> 8), uint8(g >> 8), uint8(b >> 8)
   342	}
   343	
   344	// CMYK represents a fully opaque CMYK color, having 8 bits for each of cyan,
   345	// magenta, yellow and black.
   346	//
   347	// It is not associated with any particular color profile.
   348	type CMYK struct {
   349		C, M, Y, K uint8
   350	}
   351	
   352	func (c CMYK) RGBA() (uint32, uint32, uint32, uint32) {
   353		// This code is a copy of the CMYKToRGB function above, except that it
   354		// returns values in the range [0, 0xffff] instead of [0, 0xff].
   355	
   356		w := 0xffff - uint32(c.K)*0x101
   357		r := (0xffff - uint32(c.C)*0x101) * w / 0xffff
   358		g := (0xffff - uint32(c.M)*0x101) * w / 0xffff
   359		b := (0xffff - uint32(c.Y)*0x101) * w / 0xffff
   360		return r, g, b, 0xffff
   361	}
   362	
   363	// CMYKModel is the Model for CMYK colors.
   364	var CMYKModel Model = ModelFunc(cmykModel)
   365	
   366	func cmykModel(c Color) Color {
   367		if _, ok := c.(CMYK); ok {
   368			return c
   369		}
   370		r, g, b, _ := c.RGBA()
   371		cc, mm, yy, kk := RGBToCMYK(uint8(r>>8), uint8(g>>8), uint8(b>>8))
   372		return CMYK{cc, mm, yy, kk}
   373	}
   374	

View as plain text