...

Source file src/pkg/hash/crc32/crc32.go

     1	// Copyright 2009 The Go Authors. All rights reserved.
     2	// Use of this source code is governed by a BSD-style
     3	// license that can be found in the LICENSE file.
     4	
     5	// Package crc32 implements the 32-bit cyclic redundancy check, or CRC-32,
     6	// checksum. See https://en.wikipedia.org/wiki/Cyclic_redundancy_check for
     7	// information.
     8	//
     9	// Polynomials are represented in LSB-first form also known as reversed representation.
    10	//
    11	// See https://en.wikipedia.org/wiki/Mathematics_of_cyclic_redundancy_checks#Reversed_representations_and_reciprocal_polynomials
    12	// for information.
    13	package crc32
    14	
    15	import (
    16		"errors"
    17		"hash"
    18		"sync"
    19	)
    20	
    21	// The size of a CRC-32 checksum in bytes.
    22	const Size = 4
    23	
    24	// Predefined polynomials.
    25	const (
    26		// IEEE is by far and away the most common CRC-32 polynomial.
    27		// Used by ethernet (IEEE 802.3), v.42, fddi, gzip, zip, png, ...
    28		IEEE = 0xedb88320
    29	
    30		// Castagnoli's polynomial, used in iSCSI.
    31		// Has better error detection characteristics than IEEE.
    32		// https://dx.doi.org/10.1109/26.231911
    33		Castagnoli = 0x82f63b78
    34	
    35		// Koopman's polynomial.
    36		// Also has better error detection characteristics than IEEE.
    37		// https://dx.doi.org/10.1109/DSN.2002.1028931
    38		Koopman = 0xeb31d82e
    39	)
    40	
    41	// Table is a 256-word table representing the polynomial for efficient processing.
    42	type Table [256]uint32
    43	
    44	// This file makes use of functions implemented in architecture-specific files.
    45	// The interface that they implement is as follows:
    46	//
    47	//    // archAvailableIEEE reports whether an architecture-specific CRC32-IEEE
    48	//    // algorithm is available.
    49	//    archAvailableIEEE() bool
    50	//
    51	//    // archInitIEEE initializes the architecture-specific CRC3-IEEE algorithm.
    52	//    // It can only be called if archAvailableIEEE() returns true.
    53	//    archInitIEEE()
    54	//
    55	//    // archUpdateIEEE updates the given CRC32-IEEE. It can only be called if
    56	//    // archInitIEEE() was previously called.
    57	//    archUpdateIEEE(crc uint32, p []byte) uint32
    58	//
    59	//    // archAvailableCastagnoli reports whether an architecture-specific
    60	//    // CRC32-C algorithm is available.
    61	//    archAvailableCastagnoli() bool
    62	//
    63	//    // archInitCastagnoli initializes the architecture-specific CRC32-C
    64	//    // algorithm. It can only be called if archAvailableCastagnoli() returns
    65	//    // true.
    66	//    archInitCastagnoli()
    67	//
    68	//    // archUpdateCastagnoli updates the given CRC32-C. It can only be called
    69	//    // if archInitCastagnoli() was previously called.
    70	//    archUpdateCastagnoli(crc uint32, p []byte) uint32
    71	
    72	// castagnoliTable points to a lazily initialized Table for the Castagnoli
    73	// polynomial. MakeTable will always return this value when asked to make a
    74	// Castagnoli table so we can compare against it to find when the caller is
    75	// using this polynomial.
    76	var castagnoliTable *Table
    77	var castagnoliTable8 *slicing8Table
    78	var castagnoliArchImpl bool
    79	var updateCastagnoli func(crc uint32, p []byte) uint32
    80	var castagnoliOnce sync.Once
    81	
    82	func castagnoliInit() {
    83		castagnoliTable = simpleMakeTable(Castagnoli)
    84		castagnoliArchImpl = archAvailableCastagnoli()
    85	
    86		if castagnoliArchImpl {
    87			archInitCastagnoli()
    88			updateCastagnoli = archUpdateCastagnoli
    89		} else {
    90			// Initialize the slicing-by-8 table.
    91			castagnoliTable8 = slicingMakeTable(Castagnoli)
    92			updateCastagnoli = func(crc uint32, p []byte) uint32 {
    93				return slicingUpdate(crc, castagnoliTable8, p)
    94			}
    95		}
    96	}
    97	
    98	// IEEETable is the table for the IEEE polynomial.
    99	var IEEETable = simpleMakeTable(IEEE)
   100	
   101	// ieeeTable8 is the slicing8Table for IEEE
   102	var ieeeTable8 *slicing8Table
   103	var ieeeArchImpl bool
   104	var updateIEEE func(crc uint32, p []byte) uint32
   105	var ieeeOnce sync.Once
   106	
   107	func ieeeInit() {
   108		ieeeArchImpl = archAvailableIEEE()
   109	
   110		if ieeeArchImpl {
   111			archInitIEEE()
   112			updateIEEE = archUpdateIEEE
   113		} else {
   114			// Initialize the slicing-by-8 table.
   115			ieeeTable8 = slicingMakeTable(IEEE)
   116			updateIEEE = func(crc uint32, p []byte) uint32 {
   117				return slicingUpdate(crc, ieeeTable8, p)
   118			}
   119		}
   120	}
   121	
   122	// MakeTable returns a Table constructed from the specified polynomial.
   123	// The contents of this Table must not be modified.
   124	func MakeTable(poly uint32) *Table {
   125		switch poly {
   126		case IEEE:
   127			ieeeOnce.Do(ieeeInit)
   128			return IEEETable
   129		case Castagnoli:
   130			castagnoliOnce.Do(castagnoliInit)
   131			return castagnoliTable
   132		}
   133		return simpleMakeTable(poly)
   134	}
   135	
   136	// digest represents the partial evaluation of a checksum.
   137	type digest struct {
   138		crc uint32
   139		tab *Table
   140	}
   141	
   142	// New creates a new hash.Hash32 computing the CRC-32 checksum using the
   143	// polynomial represented by the Table. Its Sum method will lay the
   144	// value out in big-endian byte order. The returned Hash32 also
   145	// implements encoding.BinaryMarshaler and encoding.BinaryUnmarshaler to
   146	// marshal and unmarshal the internal state of the hash.
   147	func New(tab *Table) hash.Hash32 {
   148		if tab == IEEETable {
   149			ieeeOnce.Do(ieeeInit)
   150		}
   151		return &digest{0, tab}
   152	}
   153	
   154	// NewIEEE creates a new hash.Hash32 computing the CRC-32 checksum using
   155	// the IEEE polynomial. Its Sum method will lay the value out in
   156	// big-endian byte order. The returned Hash32 also implements
   157	// encoding.BinaryMarshaler and encoding.BinaryUnmarshaler to marshal
   158	// and unmarshal the internal state of the hash.
   159	func NewIEEE() hash.Hash32 { return New(IEEETable) }
   160	
   161	func (d *digest) Size() int { return Size }
   162	
   163	func (d *digest) BlockSize() int { return 1 }
   164	
   165	func (d *digest) Reset() { d.crc = 0 }
   166	
   167	const (
   168		magic         = "crc\x01"
   169		marshaledSize = len(magic) + 4 + 4
   170	)
   171	
   172	func (d *digest) MarshalBinary() ([]byte, error) {
   173		b := make([]byte, 0, marshaledSize)
   174		b = append(b, magic...)
   175		b = appendUint32(b, tableSum(d.tab))
   176		b = appendUint32(b, d.crc)
   177		return b, nil
   178	}
   179	
   180	func (d *digest) UnmarshalBinary(b []byte) error {
   181		if len(b) < len(magic) || string(b[:len(magic)]) != magic {
   182			return errors.New("hash/crc32: invalid hash state identifier")
   183		}
   184		if len(b) != marshaledSize {
   185			return errors.New("hash/crc32: invalid hash state size")
   186		}
   187		if tableSum(d.tab) != readUint32(b[4:]) {
   188			return errors.New("hash/crc32: tables do not match")
   189		}
   190		d.crc = readUint32(b[8:])
   191		return nil
   192	}
   193	
   194	func appendUint32(b []byte, x uint32) []byte {
   195		a := [4]byte{
   196			byte(x >> 24),
   197			byte(x >> 16),
   198			byte(x >> 8),
   199			byte(x),
   200		}
   201		return append(b, a[:]...)
   202	}
   203	
   204	func readUint32(b []byte) uint32 {
   205		_ = b[3]
   206		return uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24
   207	}
   208	
   209	// Update returns the result of adding the bytes in p to the crc.
   210	func Update(crc uint32, tab *Table, p []byte) uint32 {
   211		switch tab {
   212		case castagnoliTable:
   213			return updateCastagnoli(crc, p)
   214		case IEEETable:
   215			// Unfortunately, because IEEETable is exported, IEEE may be used without a
   216			// call to MakeTable. We have to make sure it gets initialized in that case.
   217			ieeeOnce.Do(ieeeInit)
   218			return updateIEEE(crc, p)
   219		default:
   220			return simpleUpdate(crc, tab, p)
   221		}
   222	}
   223	
   224	func (d *digest) Write(p []byte) (n int, err error) {
   225		switch d.tab {
   226		case castagnoliTable:
   227			d.crc = updateCastagnoli(d.crc, p)
   228		case IEEETable:
   229			// We only create digest objects through New() which takes care of
   230			// initialization in this case.
   231			d.crc = updateIEEE(d.crc, p)
   232		default:
   233			d.crc = simpleUpdate(d.crc, d.tab, p)
   234		}
   235		return len(p), nil
   236	}
   237	
   238	func (d *digest) Sum32() uint32 { return d.crc }
   239	
   240	func (d *digest) Sum(in []byte) []byte {
   241		s := d.Sum32()
   242		return append(in, byte(s>>24), byte(s>>16), byte(s>>8), byte(s))
   243	}
   244	
   245	// Checksum returns the CRC-32 checksum of data
   246	// using the polynomial represented by the Table.
   247	func Checksum(data []byte, tab *Table) uint32 { return Update(0, tab, data) }
   248	
   249	// ChecksumIEEE returns the CRC-32 checksum of data
   250	// using the IEEE polynomial.
   251	func ChecksumIEEE(data []byte) uint32 {
   252		ieeeOnce.Do(ieeeInit)
   253		return updateIEEE(0, data)
   254	}
   255	
   256	// tableSum returns the IEEE checksum of table t.
   257	func tableSum(t *Table) uint32 {
   258		var a [1024]byte
   259		b := a[:0]
   260		if t != nil {
   261			for _, x := range t {
   262				b = appendUint32(b, x)
   263			}
   264		}
   265		return ChecksumIEEE(b)
   266	}
   267	

View as plain text