// Copyright 2014 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package types import ( "go/ast" "go/constant" "go/token" ) func (check *Checker) reportAltDecl(obj Object) { if pos := obj.Pos(); pos.IsValid() { // We use "other" rather than "previous" here because // the first declaration seen may not be textually // earlier in the source. check.errorf(pos, "\tother declaration of %s", obj.Name()) // secondary error, \t indented } } func (check *Checker) declare(scope *Scope, id *ast.Ident, obj Object, pos token.Pos) { // spec: "The blank identifier, represented by the underscore // character _, may be used in a declaration like any other // identifier but the declaration does not introduce a new // binding." if obj.Name() != "_" { if alt := scope.Insert(obj); alt != nil { check.errorf(obj.Pos(), "%s redeclared in this block", obj.Name()) check.reportAltDecl(alt) return } obj.setScopePos(pos) } if id != nil { check.recordDef(id, obj) } } // pathString returns a string of the form a->b-> ... ->g for a path [a, b, ... g]. // TODO(gri) remove once we don't need the old cycle detection (explicitly passed // []*TypeName path) anymore func pathString(path []*TypeName) string { var s string for i, p := range path { if i > 0 { s += "->" } s += p.Name() } return s } // objPathString returns a string of the form a->b-> ... ->g for a path [a, b, ... g]. // TODO(gri) s/objPathString/pathString/ once we got rid of pathString above func objPathString(path []Object) string { var s string for i, p := range path { if i > 0 { s += "->" } s += p.Name() } return s } // objDecl type-checks the declaration of obj in its respective (file) context. // For the meaning of def, see Checker.definedType, in typexpr.go. func (check *Checker) objDecl(obj Object, def *Named) { if trace { check.trace(obj.Pos(), "-- checking %s %s (objPath = %s)", obj.color(), obj, objPathString(check.objPath)) check.indent++ defer func() { check.indent-- check.trace(obj.Pos(), "=> %s", obj) }() } // Checking the declaration of obj means inferring its type // (and possibly its value, for constants). // An object's type (and thus the object) may be in one of // three states which are expressed by colors: // // - an object whose type is not yet known is painted white (initial color) // - an object whose type is in the process of being inferred is painted grey // - an object whose type is fully inferred is painted black // // During type inference, an object's color changes from white to grey // to black (pre-declared objects are painted black from the start). // A black object (i.e., its type) can only depend on (refer to) other black // ones. White and grey objects may depend on white and black objects. // A dependency on a grey object indicates a cycle which may or may not be // valid. // // When objects turn grey, they are pushed on the object path (a stack); // they are popped again when they turn black. Thus, if a grey object (a // cycle) is encountered, it is on the object path, and all the objects // it depends on are the remaining objects on that path. Color encoding // is such that the color value of a grey object indicates the index of // that object in the object path. // During type-checking, white objects may be assigned a type without // traversing through objDecl; e.g., when initializing constants and // variables. Update the colors of those objects here (rather than // everywhere where we set the type) to satisfy the color invariants. if obj.color() == white && obj.Type() != nil { obj.setColor(black) return } switch obj.color() { case white: assert(obj.Type() == nil) // All color values other than white and black are considered grey. // Because black and white are < grey, all values >= grey are grey. // Use those values to encode the object's index into the object path. obj.setColor(grey + color(check.push(obj))) defer func() { check.pop().setColor(black) }() case black: assert(obj.Type() != nil) return default: // Color values other than white or black are considered grey. fallthrough case grey: // We have a cycle. // In the existing code, this is marked by a non-nil type // for the object except for constants and variables whose // type may be non-nil (known), or nil if it depends on the // not-yet known initialization value. // In the former case, set the type to Typ[Invalid] because // we have an initialization cycle. The cycle error will be // reported later, when determining initialization order. // TODO(gri) Report cycle here and simplify initialization // order code. switch obj := obj.(type) { case *Const: if check.typeCycle(obj) || obj.typ == nil { obj.typ = Typ[Invalid] } case *Var: if check.typeCycle(obj) || obj.typ == nil { obj.typ = Typ[Invalid] } case *TypeName: if check.typeCycle(obj) { // break cycle // (without this, calling underlying() // below may lead to an endless loop // if we have a cycle for a defined // (*Named) type) obj.typ = Typ[Invalid] } case *Func: if check.typeCycle(obj) { // Don't set obj.typ to Typ[Invalid] here // because plenty of code type-asserts that // functions have a *Signature type. Grey // functions have their type set to an empty // signature which makes it impossible to // initialize a variable with the function. } default: unreachable() } assert(obj.Type() != nil) return } d := check.objMap[obj] if d == nil { check.dump("%v: %s should have been declared", obj.Pos(), obj) unreachable() } // save/restore current context and setup object context defer func(ctxt context) { check.context = ctxt }(check.context) check.context = context{ scope: d.file, } // Const and var declarations must not have initialization // cycles. We track them by remembering the current declaration // in check.decl. Initialization expressions depending on other // consts, vars, or functions, add dependencies to the current // check.decl. switch obj := obj.(type) { case *Const: check.decl = d // new package-level const decl check.constDecl(obj, d.typ, d.init) case *Var: check.decl = d // new package-level var decl check.varDecl(obj, d.lhs, d.typ, d.init) case *TypeName: // invalid recursive types are detected via path check.typeDecl(obj, d.typ, def, d.alias) case *Func: // functions may be recursive - no need to track dependencies check.funcDecl(obj, d) default: unreachable() } } // indir is a sentinel type name that is pushed onto the object path // to indicate an "indirection" in the dependency from one type name // to the next. For instance, for "type p *p" the object path contains // p followed by indir, indicating that there's an indirection *p. // Indirections are used to break type cycles. var indir = NewTypeName(token.NoPos, nil, "*", nil) // typeCycle checks if the cycle starting with obj is valid and // reports an error if it is not. // TODO(gri) rename s/typeCycle/cycle/ once we don't need the other // cycle method anymore. func (check *Checker) typeCycle(obj Object) (isCycle bool) { // The object map contains the package scope objects and the non-interface methods. if debug { info := check.objMap[obj] inObjMap := info != nil && (info.fdecl == nil || info.fdecl.Recv == nil) // exclude methods isPkgObj := obj.Parent() == check.pkg.scope if isPkgObj != inObjMap { check.dump("%v: inconsistent object map for %s (isPkgObj = %v, inObjMap = %v)", obj.Pos(), obj, isPkgObj, inObjMap) unreachable() } } // Given the number of constants and variables (nval) in the cycle // and the cycle length (ncycle = number of named objects in the cycle), // we distinguish between cycles involving only constants and variables // (nval = ncycle), cycles involving types (and functions) only // (nval == 0), and mixed cycles (nval != 0 && nval != ncycle). // We ignore functions at the moment (taking them into account correctly // is complicated and it doesn't improve error reporting significantly). // // A cycle must have at least one indirection and one type definition // to be permitted: If there is no indirection, the size of the type // cannot be computed (it's either infinite or 0); if there is no type // definition, we have a sequence of alias type names which will expand // ad infinitum. var nval, ncycle int var hasIndir, hasTDef bool assert(obj.color() >= grey) start := obj.color() - grey // index of obj in objPath cycle := check.objPath[start:] ncycle = len(cycle) // including indirections for _, obj := range cycle { switch obj := obj.(type) { case *Const, *Var: nval++ case *TypeName: if obj == indir { ncycle-- // don't count (indirections are not objects) hasIndir = true } else { // Determine if the type name is an alias or not. For // package-level objects, use the object map which // provides syntactic information (which doesn't rely // on the order in which the objects are set up). For // local objects, we can rely on the order, so use // the object's predicate. // TODO(gri) It would be less fragile to always access // the syntactic information. We should consider storing // this information explicitly in the object. var alias bool if d := check.objMap[obj]; d != nil { alias = d.alias // package-level object } else { alias = obj.IsAlias() // function local object } if !alias { hasTDef = true } } case *Func: // ignored for now default: unreachable() } } if trace { check.trace(obj.Pos(), "## cycle detected: objPath = %s->%s (len = %d)", objPathString(cycle), obj.Name(), ncycle) check.trace(obj.Pos(), "## cycle contains: %d values, has indirection = %v, has type definition = %v", nval, hasIndir, hasTDef) defer func() { if isCycle { check.trace(obj.Pos(), "=> error: cycle is invalid") } }() } // A cycle involving only constants and variables is invalid but we // ignore them here because they are reported via the initialization // cycle check. if nval == ncycle { return false } // A cycle involving only types (and possibly functions) must have at // least one indirection and one type definition to be permitted: If // there is no indirection, the size of the type cannot be computed // (it's either infinite or 0); if there is no type definition, we // have a sequence of alias type names which will expand ad infinitum. if nval == 0 && hasIndir && hasTDef { return false // cycle is permitted } // report cycle check.errorf(obj.Pos(), "illegal cycle in declaration of %s", obj.Name()) for _, obj := range cycle { if obj == indir { continue // don't print indir sentinels } check.errorf(obj.Pos(), "\t%s refers to", obj.Name()) // secondary error, \t indented } check.errorf(obj.Pos(), "\t%s", obj.Name()) return true } func (check *Checker) constDecl(obj *Const, typ, init ast.Expr) { assert(obj.typ == nil) // use the correct value of iota check.iota = obj.val defer func() { check.iota = nil }() // provide valid constant value under all circumstances obj.val = constant.MakeUnknown() // determine type, if any if typ != nil { t := check.typ(typ) if !isConstType(t) { // don't report an error if the type is an invalid C (defined) type // (issue #22090) if t.Underlying() != Typ[Invalid] { check.errorf(typ.Pos(), "invalid constant type %s", t) } obj.typ = Typ[Invalid] return } obj.typ = t } // check initialization var x operand if init != nil { check.expr(&x, init) } check.initConst(obj, &x) } func (check *Checker) varDecl(obj *Var, lhs []*Var, typ, init ast.Expr) { assert(obj.typ == nil) // determine type, if any if typ != nil { obj.typ = check.typ(typ) // We cannot spread the type to all lhs variables if there // are more than one since that would mark them as checked // (see Checker.objDecl) and the assignment of init exprs, // if any, would not be checked. // // TODO(gri) If we have no init expr, we should distribute // a given type otherwise we need to re-evalate the type // expr for each lhs variable, leading to duplicate work. } // check initialization if init == nil { if typ == nil { // error reported before by arityMatch obj.typ = Typ[Invalid] } return } if lhs == nil || len(lhs) == 1 { assert(lhs == nil || lhs[0] == obj) var x operand check.expr(&x, init) check.initVar(obj, &x, "variable declaration") return } if debug { // obj must be one of lhs found := false for _, lhs := range lhs { if obj == lhs { found = true break } } if !found { panic("inconsistent lhs") } } // We have multiple variables on the lhs and one init expr. // Make sure all variables have been given the same type if // one was specified, otherwise they assume the type of the // init expression values (was issue #15755). if typ != nil { for _, lhs := range lhs { lhs.typ = obj.typ } } check.initVars(lhs, []ast.Expr{init}, token.NoPos) } // underlying returns the underlying type of typ; possibly by following // forward chains of named types. Such chains only exist while named types // are incomplete. func underlying(typ Type) Type { for { n, _ := typ.(*Named) if n == nil { break } typ = n.underlying } return typ } func (n *Named) setUnderlying(typ Type) { if n != nil { n.underlying = typ } } func (check *Checker) typeDecl(obj *TypeName, typ ast.Expr, def *Named, alias bool) { assert(obj.typ == nil) if alias { obj.typ = Typ[Invalid] obj.typ = check.typ(typ) } else { named := &Named{obj: obj} def.setUnderlying(named) obj.typ = named // make sure recursive type declarations terminate // determine underlying type of named check.definedType(typ, named) // The underlying type of named may be itself a named type that is // incomplete: // // type ( // A B // B *C // C A // ) // // The type of C is the (named) type of A which is incomplete, // and which has as its underlying type the named type B. // Determine the (final, unnamed) underlying type by resolving // any forward chain (they always end in an unnamed type). named.underlying = underlying(named.underlying) } check.addMethodDecls(obj) } func (check *Checker) addMethodDecls(obj *TypeName) { // get associated methods // (Checker.collectObjects only collects methods with non-blank names; // Checker.resolveBaseTypeName ensures that obj is not an alias name // if it has attached methods.) methods := check.methods[obj] if methods == nil { return } delete(check.methods, obj) assert(!check.objMap[obj].alias) // don't use TypeName.IsAlias (requires fully set up object) // use an objset to check for name conflicts var mset objset // spec: "If the base type is a struct type, the non-blank method // and field names must be distinct." base, _ := obj.typ.(*Named) // shouldn't fail but be conservative if base != nil { if t, _ := base.underlying.(*Struct); t != nil { for _, fld := range t.fields { if fld.name != "_" { assert(mset.insert(fld) == nil) } } } // Checker.Files may be called multiple times; additional package files // may add methods to already type-checked types. Add pre-existing methods // so that we can detect redeclarations. for _, m := range base.methods { assert(m.name != "_") assert(mset.insert(m) == nil) } } // add valid methods for _, m := range methods { // spec: "For a base type, the non-blank names of methods bound // to it must be unique." assert(m.name != "_") if alt := mset.insert(m); alt != nil { switch alt.(type) { case *Var: check.errorf(m.pos, "field and method with the same name %s", m.name) case *Func: check.errorf(m.pos, "method %s already declared for %s", m.name, obj) default: unreachable() } check.reportAltDecl(alt) continue } if base != nil { base.methods = append(base.methods, m) } } } func (check *Checker) funcDecl(obj *Func, decl *declInfo) { assert(obj.typ == nil) // func declarations cannot use iota assert(check.iota == nil) sig := new(Signature) obj.typ = sig // guard against cycles fdecl := decl.fdecl check.funcType(sig, fdecl.Recv, fdecl.Type) if sig.recv == nil && obj.name == "init" && (sig.params.Len() > 0 || sig.results.Len() > 0) { check.errorf(fdecl.Pos(), "func init must have no arguments and no return values") // ok to continue } // function body must be type-checked after global declarations // (functions implemented elsewhere have no body) if !check.conf.IgnoreFuncBodies && fdecl.Body != nil { check.later(func() { check.funcBody(decl, obj.name, sig, fdecl.Body, nil) }) } } func (check *Checker) declStmt(decl ast.Decl) { pkg := check.pkg switch d := decl.(type) { case *ast.BadDecl: // ignore case *ast.GenDecl: var last *ast.ValueSpec // last ValueSpec with type or init exprs seen for iota, spec := range d.Specs { switch s := spec.(type) { case *ast.ValueSpec: switch d.Tok { case token.CONST: top := len(check.delayed) // determine which init exprs to use switch { case s.Type != nil || len(s.Values) > 0: last = s case last == nil: last = new(ast.ValueSpec) // make sure last exists } // declare all constants lhs := make([]*Const, len(s.Names)) for i, name := range s.Names { obj := NewConst(name.Pos(), pkg, name.Name, nil, constant.MakeInt64(int64(iota))) lhs[i] = obj var init ast.Expr if i < len(last.Values) { init = last.Values[i] } check.constDecl(obj, last.Type, init) } check.arityMatch(s, last) // process function literals in init expressions before scope changes check.processDelayed(top) // spec: "The scope of a constant or variable identifier declared // inside a function begins at the end of the ConstSpec or VarSpec // (ShortVarDecl for short variable declarations) and ends at the // end of the innermost containing block." scopePos := s.End() for i, name := range s.Names { check.declare(check.scope, name, lhs[i], scopePos) } case token.VAR: top := len(check.delayed) lhs0 := make([]*Var, len(s.Names)) for i, name := range s.Names { lhs0[i] = NewVar(name.Pos(), pkg, name.Name, nil) } // initialize all variables for i, obj := range lhs0 { var lhs []*Var var init ast.Expr switch len(s.Values) { case len(s.Names): // lhs and rhs match init = s.Values[i] case 1: // rhs is expected to be a multi-valued expression lhs = lhs0 init = s.Values[0] default: if i < len(s.Values) { init = s.Values[i] } } check.varDecl(obj, lhs, s.Type, init) if len(s.Values) == 1 { // If we have a single lhs variable we are done either way. // If we have a single rhs expression, it must be a multi- // valued expression, in which case handling the first lhs // variable will cause all lhs variables to have a type // assigned, and we are done as well. if debug { for _, obj := range lhs0 { assert(obj.typ != nil) } } break } } check.arityMatch(s, nil) // process function literals in init expressions before scope changes check.processDelayed(top) // declare all variables // (only at this point are the variable scopes (parents) set) scopePos := s.End() // see constant declarations for i, name := range s.Names { // see constant declarations check.declare(check.scope, name, lhs0[i], scopePos) } default: check.invalidAST(s.Pos(), "invalid token %s", d.Tok) } case *ast.TypeSpec: obj := NewTypeName(s.Name.Pos(), pkg, s.Name.Name, nil) // spec: "The scope of a type identifier declared inside a function // begins at the identifier in the TypeSpec and ends at the end of // the innermost containing block." scopePos := s.Name.Pos() check.declare(check.scope, s.Name, obj, scopePos) // mark and unmark type before calling typeDecl; its type is still nil (see Checker.objDecl) obj.setColor(grey + color(check.push(obj))) check.typeDecl(obj, s.Type, nil, s.Assign.IsValid()) check.pop().setColor(black) default: check.invalidAST(s.Pos(), "const, type, or var declaration expected") } } default: check.invalidAST(d.Pos(), "unknown ast.Decl node %T", d) } }