...

Source file src/pkg/encoding/asn1/asn1.go

     1	// Copyright 2009 The Go Authors. All rights reserved.
     2	// Use of this source code is governed by a BSD-style
     3	// license that can be found in the LICENSE file.
     4	
     5	// Package asn1 implements parsing of DER-encoded ASN.1 data structures,
     6	// as defined in ITU-T Rec X.690.
     7	//
     8	// See also ``A Layman's Guide to a Subset of ASN.1, BER, and DER,''
     9	// http://luca.ntop.org/Teaching/Appunti/asn1.html.
    10	package asn1
    11	
    12	// ASN.1 is a syntax for specifying abstract objects and BER, DER, PER, XER etc
    13	// are different encoding formats for those objects. Here, we'll be dealing
    14	// with DER, the Distinguished Encoding Rules. DER is used in X.509 because
    15	// it's fast to parse and, unlike BER, has a unique encoding for every object.
    16	// When calculating hashes over objects, it's important that the resulting
    17	// bytes be the same at both ends and DER removes this margin of error.
    18	//
    19	// ASN.1 is very complex and this package doesn't attempt to implement
    20	// everything by any means.
    21	
    22	import (
    23		"errors"
    24		"fmt"
    25		"math"
    26		"math/big"
    27		"reflect"
    28		"strconv"
    29		"time"
    30		"unicode/utf8"
    31	)
    32	
    33	// A StructuralError suggests that the ASN.1 data is valid, but the Go type
    34	// which is receiving it doesn't match.
    35	type StructuralError struct {
    36		Msg string
    37	}
    38	
    39	func (e StructuralError) Error() string { return "asn1: structure error: " + e.Msg }
    40	
    41	// A SyntaxError suggests that the ASN.1 data is invalid.
    42	type SyntaxError struct {
    43		Msg string
    44	}
    45	
    46	func (e SyntaxError) Error() string { return "asn1: syntax error: " + e.Msg }
    47	
    48	// We start by dealing with each of the primitive types in turn.
    49	
    50	// BOOLEAN
    51	
    52	func parseBool(bytes []byte) (ret bool, err error) {
    53		if len(bytes) != 1 {
    54			err = SyntaxError{"invalid boolean"}
    55			return
    56		}
    57	
    58		// DER demands that "If the encoding represents the boolean value TRUE,
    59		// its single contents octet shall have all eight bits set to one."
    60		// Thus only 0 and 255 are valid encoded values.
    61		switch bytes[0] {
    62		case 0:
    63			ret = false
    64		case 0xff:
    65			ret = true
    66		default:
    67			err = SyntaxError{"invalid boolean"}
    68		}
    69	
    70		return
    71	}
    72	
    73	// INTEGER
    74	
    75	// checkInteger returns nil if the given bytes are a valid DER-encoded
    76	// INTEGER and an error otherwise.
    77	func checkInteger(bytes []byte) error {
    78		if len(bytes) == 0 {
    79			return StructuralError{"empty integer"}
    80		}
    81		if len(bytes) == 1 {
    82			return nil
    83		}
    84		if (bytes[0] == 0 && bytes[1]&0x80 == 0) || (bytes[0] == 0xff && bytes[1]&0x80 == 0x80) {
    85			return StructuralError{"integer not minimally-encoded"}
    86		}
    87		return nil
    88	}
    89	
    90	// parseInt64 treats the given bytes as a big-endian, signed integer and
    91	// returns the result.
    92	func parseInt64(bytes []byte) (ret int64, err error) {
    93		err = checkInteger(bytes)
    94		if err != nil {
    95			return
    96		}
    97		if len(bytes) > 8 {
    98			// We'll overflow an int64 in this case.
    99			err = StructuralError{"integer too large"}
   100			return
   101		}
   102		for bytesRead := 0; bytesRead < len(bytes); bytesRead++ {
   103			ret <<= 8
   104			ret |= int64(bytes[bytesRead])
   105		}
   106	
   107		// Shift up and down in order to sign extend the result.
   108		ret <<= 64 - uint8(len(bytes))*8
   109		ret >>= 64 - uint8(len(bytes))*8
   110		return
   111	}
   112	
   113	// parseInt treats the given bytes as a big-endian, signed integer and returns
   114	// the result.
   115	func parseInt32(bytes []byte) (int32, error) {
   116		if err := checkInteger(bytes); err != nil {
   117			return 0, err
   118		}
   119		ret64, err := parseInt64(bytes)
   120		if err != nil {
   121			return 0, err
   122		}
   123		if ret64 != int64(int32(ret64)) {
   124			return 0, StructuralError{"integer too large"}
   125		}
   126		return int32(ret64), nil
   127	}
   128	
   129	var bigOne = big.NewInt(1)
   130	
   131	// parseBigInt treats the given bytes as a big-endian, signed integer and returns
   132	// the result.
   133	func parseBigInt(bytes []byte) (*big.Int, error) {
   134		if err := checkInteger(bytes); err != nil {
   135			return nil, err
   136		}
   137		ret := new(big.Int)
   138		if len(bytes) > 0 && bytes[0]&0x80 == 0x80 {
   139			// This is a negative number.
   140			notBytes := make([]byte, len(bytes))
   141			for i := range notBytes {
   142				notBytes[i] = ^bytes[i]
   143			}
   144			ret.SetBytes(notBytes)
   145			ret.Add(ret, bigOne)
   146			ret.Neg(ret)
   147			return ret, nil
   148		}
   149		ret.SetBytes(bytes)
   150		return ret, nil
   151	}
   152	
   153	// BIT STRING
   154	
   155	// BitString is the structure to use when you want an ASN.1 BIT STRING type. A
   156	// bit string is padded up to the nearest byte in memory and the number of
   157	// valid bits is recorded. Padding bits will be zero.
   158	type BitString struct {
   159		Bytes     []byte // bits packed into bytes.
   160		BitLength int    // length in bits.
   161	}
   162	
   163	// At returns the bit at the given index. If the index is out of range it
   164	// returns false.
   165	func (b BitString) At(i int) int {
   166		if i < 0 || i >= b.BitLength {
   167			return 0
   168		}
   169		x := i / 8
   170		y := 7 - uint(i%8)
   171		return int(b.Bytes[x]>>y) & 1
   172	}
   173	
   174	// RightAlign returns a slice where the padding bits are at the beginning. The
   175	// slice may share memory with the BitString.
   176	func (b BitString) RightAlign() []byte {
   177		shift := uint(8 - (b.BitLength % 8))
   178		if shift == 8 || len(b.Bytes) == 0 {
   179			return b.Bytes
   180		}
   181	
   182		a := make([]byte, len(b.Bytes))
   183		a[0] = b.Bytes[0] >> shift
   184		for i := 1; i < len(b.Bytes); i++ {
   185			a[i] = b.Bytes[i-1] << (8 - shift)
   186			a[i] |= b.Bytes[i] >> shift
   187		}
   188	
   189		return a
   190	}
   191	
   192	// parseBitString parses an ASN.1 bit string from the given byte slice and returns it.
   193	func parseBitString(bytes []byte) (ret BitString, err error) {
   194		if len(bytes) == 0 {
   195			err = SyntaxError{"zero length BIT STRING"}
   196			return
   197		}
   198		paddingBits := int(bytes[0])
   199		if paddingBits > 7 ||
   200			len(bytes) == 1 && paddingBits > 0 ||
   201			bytes[len(bytes)-1]&((1<<bytes[0])-1) != 0 {
   202			err = SyntaxError{"invalid padding bits in BIT STRING"}
   203			return
   204		}
   205		ret.BitLength = (len(bytes)-1)*8 - paddingBits
   206		ret.Bytes = bytes[1:]
   207		return
   208	}
   209	
   210	// NULL
   211	
   212	// NullRawValue is a RawValue with its Tag set to the ASN.1 NULL type tag (5).
   213	var NullRawValue = RawValue{Tag: TagNull}
   214	
   215	// NullBytes contains bytes representing the DER-encoded ASN.1 NULL type.
   216	var NullBytes = []byte{TagNull, 0}
   217	
   218	// OBJECT IDENTIFIER
   219	
   220	// An ObjectIdentifier represents an ASN.1 OBJECT IDENTIFIER.
   221	type ObjectIdentifier []int
   222	
   223	// Equal reports whether oi and other represent the same identifier.
   224	func (oi ObjectIdentifier) Equal(other ObjectIdentifier) bool {
   225		if len(oi) != len(other) {
   226			return false
   227		}
   228		for i := 0; i < len(oi); i++ {
   229			if oi[i] != other[i] {
   230				return false
   231			}
   232		}
   233	
   234		return true
   235	}
   236	
   237	func (oi ObjectIdentifier) String() string {
   238		var s string
   239	
   240		for i, v := range oi {
   241			if i > 0 {
   242				s += "."
   243			}
   244			s += strconv.Itoa(v)
   245		}
   246	
   247		return s
   248	}
   249	
   250	// parseObjectIdentifier parses an OBJECT IDENTIFIER from the given bytes and
   251	// returns it. An object identifier is a sequence of variable length integers
   252	// that are assigned in a hierarchy.
   253	func parseObjectIdentifier(bytes []byte) (s ObjectIdentifier, err error) {
   254		if len(bytes) == 0 {
   255			err = SyntaxError{"zero length OBJECT IDENTIFIER"}
   256			return
   257		}
   258	
   259		// In the worst case, we get two elements from the first byte (which is
   260		// encoded differently) and then every varint is a single byte long.
   261		s = make([]int, len(bytes)+1)
   262	
   263		// The first varint is 40*value1 + value2:
   264		// According to this packing, value1 can take the values 0, 1 and 2 only.
   265		// When value1 = 0 or value1 = 1, then value2 is <= 39. When value1 = 2,
   266		// then there are no restrictions on value2.
   267		v, offset, err := parseBase128Int(bytes, 0)
   268		if err != nil {
   269			return
   270		}
   271		if v < 80 {
   272			s[0] = v / 40
   273			s[1] = v % 40
   274		} else {
   275			s[0] = 2
   276			s[1] = v - 80
   277		}
   278	
   279		i := 2
   280		for ; offset < len(bytes); i++ {
   281			v, offset, err = parseBase128Int(bytes, offset)
   282			if err != nil {
   283				return
   284			}
   285			s[i] = v
   286		}
   287		s = s[0:i]
   288		return
   289	}
   290	
   291	// ENUMERATED
   292	
   293	// An Enumerated is represented as a plain int.
   294	type Enumerated int
   295	
   296	// FLAG
   297	
   298	// A Flag accepts any data and is set to true if present.
   299	type Flag bool
   300	
   301	// parseBase128Int parses a base-128 encoded int from the given offset in the
   302	// given byte slice. It returns the value and the new offset.
   303	func parseBase128Int(bytes []byte, initOffset int) (ret, offset int, err error) {
   304		offset = initOffset
   305		var ret64 int64
   306		for shifted := 0; offset < len(bytes); shifted++ {
   307			// 5 * 7 bits per byte == 35 bits of data
   308			// Thus the representation is either non-minimal or too large for an int32
   309			if shifted == 5 {
   310				err = StructuralError{"base 128 integer too large"}
   311				return
   312			}
   313			ret64 <<= 7
   314			b := bytes[offset]
   315			ret64 |= int64(b & 0x7f)
   316			offset++
   317			if b&0x80 == 0 {
   318				ret = int(ret64)
   319				// Ensure that the returned value fits in an int on all platforms
   320				if ret64 > math.MaxInt32 {
   321					err = StructuralError{"base 128 integer too large"}
   322				}
   323				return
   324			}
   325		}
   326		err = SyntaxError{"truncated base 128 integer"}
   327		return
   328	}
   329	
   330	// UTCTime
   331	
   332	func parseUTCTime(bytes []byte) (ret time.Time, err error) {
   333		s := string(bytes)
   334	
   335		formatStr := "0601021504Z0700"
   336		ret, err = time.Parse(formatStr, s)
   337		if err != nil {
   338			formatStr = "060102150405Z0700"
   339			ret, err = time.Parse(formatStr, s)
   340		}
   341		if err != nil {
   342			return
   343		}
   344	
   345		if serialized := ret.Format(formatStr); serialized != s {
   346			err = fmt.Errorf("asn1: time did not serialize back to the original value and may be invalid: given %q, but serialized as %q", s, serialized)
   347			return
   348		}
   349	
   350		if ret.Year() >= 2050 {
   351			// UTCTime only encodes times prior to 2050. See https://tools.ietf.org/html/rfc5280#section-4.1.2.5.1
   352			ret = ret.AddDate(-100, 0, 0)
   353		}
   354	
   355		return
   356	}
   357	
   358	// parseGeneralizedTime parses the GeneralizedTime from the given byte slice
   359	// and returns the resulting time.
   360	func parseGeneralizedTime(bytes []byte) (ret time.Time, err error) {
   361		const formatStr = "20060102150405Z0700"
   362		s := string(bytes)
   363	
   364		if ret, err = time.Parse(formatStr, s); err != nil {
   365			return
   366		}
   367	
   368		if serialized := ret.Format(formatStr); serialized != s {
   369			err = fmt.Errorf("asn1: time did not serialize back to the original value and may be invalid: given %q, but serialized as %q", s, serialized)
   370		}
   371	
   372		return
   373	}
   374	
   375	// NumericString
   376	
   377	// parseNumericString parses an ASN.1 NumericString from the given byte array
   378	// and returns it.
   379	func parseNumericString(bytes []byte) (ret string, err error) {
   380		for _, b := range bytes {
   381			if !isNumeric(b) {
   382				return "", SyntaxError{"NumericString contains invalid character"}
   383			}
   384		}
   385		return string(bytes), nil
   386	}
   387	
   388	// isNumeric reports whether the given b is in the ASN.1 NumericString set.
   389	func isNumeric(b byte) bool {
   390		return '0' <= b && b <= '9' ||
   391			b == ' '
   392	}
   393	
   394	// PrintableString
   395	
   396	// parsePrintableString parses an ASN.1 PrintableString from the given byte
   397	// array and returns it.
   398	func parsePrintableString(bytes []byte) (ret string, err error) {
   399		for _, b := range bytes {
   400			if !isPrintable(b, allowAsterisk, allowAmpersand) {
   401				err = SyntaxError{"PrintableString contains invalid character"}
   402				return
   403			}
   404		}
   405		ret = string(bytes)
   406		return
   407	}
   408	
   409	type asteriskFlag bool
   410	type ampersandFlag bool
   411	
   412	const (
   413		allowAsterisk  asteriskFlag = true
   414		rejectAsterisk asteriskFlag = false
   415	
   416		allowAmpersand  ampersandFlag = true
   417		rejectAmpersand ampersandFlag = false
   418	)
   419	
   420	// isPrintable reports whether the given b is in the ASN.1 PrintableString set.
   421	// If asterisk is allowAsterisk then '*' is also allowed, reflecting existing
   422	// practice. If ampersand is allowAmpersand then '&' is allowed as well.
   423	func isPrintable(b byte, asterisk asteriskFlag, ampersand ampersandFlag) bool {
   424		return 'a' <= b && b <= 'z' ||
   425			'A' <= b && b <= 'Z' ||
   426			'0' <= b && b <= '9' ||
   427			'\'' <= b && b <= ')' ||
   428			'+' <= b && b <= '/' ||
   429			b == ' ' ||
   430			b == ':' ||
   431			b == '=' ||
   432			b == '?' ||
   433			// This is technically not allowed in a PrintableString.
   434			// However, x509 certificates with wildcard strings don't
   435			// always use the correct string type so we permit it.
   436			(bool(asterisk) && b == '*') ||
   437			// This is not technically allowed either. However, not
   438			// only is it relatively common, but there are also a
   439			// handful of CA certificates that contain it. At least
   440			// one of which will not expire until 2027.
   441			(bool(ampersand) && b == '&')
   442	}
   443	
   444	// IA5String
   445	
   446	// parseIA5String parses an ASN.1 IA5String (ASCII string) from the given
   447	// byte slice and returns it.
   448	func parseIA5String(bytes []byte) (ret string, err error) {
   449		for _, b := range bytes {
   450			if b >= utf8.RuneSelf {
   451				err = SyntaxError{"IA5String contains invalid character"}
   452				return
   453			}
   454		}
   455		ret = string(bytes)
   456		return
   457	}
   458	
   459	// T61String
   460	
   461	// parseT61String parses an ASN.1 T61String (8-bit clean string) from the given
   462	// byte slice and returns it.
   463	func parseT61String(bytes []byte) (ret string, err error) {
   464		return string(bytes), nil
   465	}
   466	
   467	// UTF8String
   468	
   469	// parseUTF8String parses an ASN.1 UTF8String (raw UTF-8) from the given byte
   470	// array and returns it.
   471	func parseUTF8String(bytes []byte) (ret string, err error) {
   472		if !utf8.Valid(bytes) {
   473			return "", errors.New("asn1: invalid UTF-8 string")
   474		}
   475		return string(bytes), nil
   476	}
   477	
   478	// A RawValue represents an undecoded ASN.1 object.
   479	type RawValue struct {
   480		Class, Tag int
   481		IsCompound bool
   482		Bytes      []byte
   483		FullBytes  []byte // includes the tag and length
   484	}
   485	
   486	// RawContent is used to signal that the undecoded, DER data needs to be
   487	// preserved for a struct. To use it, the first field of the struct must have
   488	// this type. It's an error for any of the other fields to have this type.
   489	type RawContent []byte
   490	
   491	// Tagging
   492	
   493	// parseTagAndLength parses an ASN.1 tag and length pair from the given offset
   494	// into a byte slice. It returns the parsed data and the new offset. SET and
   495	// SET OF (tag 17) are mapped to SEQUENCE and SEQUENCE OF (tag 16) since we
   496	// don't distinguish between ordered and unordered objects in this code.
   497	func parseTagAndLength(bytes []byte, initOffset int) (ret tagAndLength, offset int, err error) {
   498		offset = initOffset
   499		// parseTagAndLength should not be called without at least a single
   500		// byte to read. Thus this check is for robustness:
   501		if offset >= len(bytes) {
   502			err = errors.New("asn1: internal error in parseTagAndLength")
   503			return
   504		}
   505		b := bytes[offset]
   506		offset++
   507		ret.class = int(b >> 6)
   508		ret.isCompound = b&0x20 == 0x20
   509		ret.tag = int(b & 0x1f)
   510	
   511		// If the bottom five bits are set, then the tag number is actually base 128
   512		// encoded afterwards
   513		if ret.tag == 0x1f {
   514			ret.tag, offset, err = parseBase128Int(bytes, offset)
   515			if err != nil {
   516				return
   517			}
   518			// Tags should be encoded in minimal form.
   519			if ret.tag < 0x1f {
   520				err = SyntaxError{"non-minimal tag"}
   521				return
   522			}
   523		}
   524		if offset >= len(bytes) {
   525			err = SyntaxError{"truncated tag or length"}
   526			return
   527		}
   528		b = bytes[offset]
   529		offset++
   530		if b&0x80 == 0 {
   531			// The length is encoded in the bottom 7 bits.
   532			ret.length = int(b & 0x7f)
   533		} else {
   534			// Bottom 7 bits give the number of length bytes to follow.
   535			numBytes := int(b & 0x7f)
   536			if numBytes == 0 {
   537				err = SyntaxError{"indefinite length found (not DER)"}
   538				return
   539			}
   540			ret.length = 0
   541			for i := 0; i < numBytes; i++ {
   542				if offset >= len(bytes) {
   543					err = SyntaxError{"truncated tag or length"}
   544					return
   545				}
   546				b = bytes[offset]
   547				offset++
   548				if ret.length >= 1<<23 {
   549					// We can't shift ret.length up without
   550					// overflowing.
   551					err = StructuralError{"length too large"}
   552					return
   553				}
   554				ret.length <<= 8
   555				ret.length |= int(b)
   556				if ret.length == 0 {
   557					// DER requires that lengths be minimal.
   558					err = StructuralError{"superfluous leading zeros in length"}
   559					return
   560				}
   561			}
   562			// Short lengths must be encoded in short form.
   563			if ret.length < 0x80 {
   564				err = StructuralError{"non-minimal length"}
   565				return
   566			}
   567		}
   568	
   569		return
   570	}
   571	
   572	// parseSequenceOf is used for SEQUENCE OF and SET OF values. It tries to parse
   573	// a number of ASN.1 values from the given byte slice and returns them as a
   574	// slice of Go values of the given type.
   575	func parseSequenceOf(bytes []byte, sliceType reflect.Type, elemType reflect.Type) (ret reflect.Value, err error) {
   576		matchAny, expectedTag, compoundType, ok := getUniversalType(elemType)
   577		if !ok {
   578			err = StructuralError{"unknown Go type for slice"}
   579			return
   580		}
   581	
   582		// First we iterate over the input and count the number of elements,
   583		// checking that the types are correct in each case.
   584		numElements := 0
   585		for offset := 0; offset < len(bytes); {
   586			var t tagAndLength
   587			t, offset, err = parseTagAndLength(bytes, offset)
   588			if err != nil {
   589				return
   590			}
   591			switch t.tag {
   592			case TagIA5String, TagGeneralString, TagT61String, TagUTF8String, TagNumericString:
   593				// We pretend that various other string types are
   594				// PRINTABLE STRINGs so that a sequence of them can be
   595				// parsed into a []string.
   596				t.tag = TagPrintableString
   597			case TagGeneralizedTime, TagUTCTime:
   598				// Likewise, both time types are treated the same.
   599				t.tag = TagUTCTime
   600			}
   601	
   602			if !matchAny && (t.class != ClassUniversal || t.isCompound != compoundType || t.tag != expectedTag) {
   603				err = StructuralError{"sequence tag mismatch"}
   604				return
   605			}
   606			if invalidLength(offset, t.length, len(bytes)) {
   607				err = SyntaxError{"truncated sequence"}
   608				return
   609			}
   610			offset += t.length
   611			numElements++
   612		}
   613		ret = reflect.MakeSlice(sliceType, numElements, numElements)
   614		params := fieldParameters{}
   615		offset := 0
   616		for i := 0; i < numElements; i++ {
   617			offset, err = parseField(ret.Index(i), bytes, offset, params)
   618			if err != nil {
   619				return
   620			}
   621		}
   622		return
   623	}
   624	
   625	var (
   626		bitStringType        = reflect.TypeOf(BitString{})
   627		objectIdentifierType = reflect.TypeOf(ObjectIdentifier{})
   628		enumeratedType       = reflect.TypeOf(Enumerated(0))
   629		flagType             = reflect.TypeOf(Flag(false))
   630		timeType             = reflect.TypeOf(time.Time{})
   631		rawValueType         = reflect.TypeOf(RawValue{})
   632		rawContentsType      = reflect.TypeOf(RawContent(nil))
   633		bigIntType           = reflect.TypeOf(new(big.Int))
   634	)
   635	
   636	// invalidLength reports whether offset + length > sliceLength, or if the
   637	// addition would overflow.
   638	func invalidLength(offset, length, sliceLength int) bool {
   639		return offset+length < offset || offset+length > sliceLength
   640	}
   641	
   642	// parseField is the main parsing function. Given a byte slice and an offset
   643	// into the array, it will try to parse a suitable ASN.1 value out and store it
   644	// in the given Value.
   645	func parseField(v reflect.Value, bytes []byte, initOffset int, params fieldParameters) (offset int, err error) {
   646		offset = initOffset
   647		fieldType := v.Type()
   648	
   649		// If we have run out of data, it may be that there are optional elements at the end.
   650		if offset == len(bytes) {
   651			if !setDefaultValue(v, params) {
   652				err = SyntaxError{"sequence truncated"}
   653			}
   654			return
   655		}
   656	
   657		// Deal with the ANY type.
   658		if ifaceType := fieldType; ifaceType.Kind() == reflect.Interface && ifaceType.NumMethod() == 0 {
   659			var t tagAndLength
   660			t, offset, err = parseTagAndLength(bytes, offset)
   661			if err != nil {
   662				return
   663			}
   664			if invalidLength(offset, t.length, len(bytes)) {
   665				err = SyntaxError{"data truncated"}
   666				return
   667			}
   668			var result interface{}
   669			if !t.isCompound && t.class == ClassUniversal {
   670				innerBytes := bytes[offset : offset+t.length]
   671				switch t.tag {
   672				case TagPrintableString:
   673					result, err = parsePrintableString(innerBytes)
   674				case TagNumericString:
   675					result, err = parseNumericString(innerBytes)
   676				case TagIA5String:
   677					result, err = parseIA5String(innerBytes)
   678				case TagT61String:
   679					result, err = parseT61String(innerBytes)
   680				case TagUTF8String:
   681					result, err = parseUTF8String(innerBytes)
   682				case TagInteger:
   683					result, err = parseInt64(innerBytes)
   684				case TagBitString:
   685					result, err = parseBitString(innerBytes)
   686				case TagOID:
   687					result, err = parseObjectIdentifier(innerBytes)
   688				case TagUTCTime:
   689					result, err = parseUTCTime(innerBytes)
   690				case TagGeneralizedTime:
   691					result, err = parseGeneralizedTime(innerBytes)
   692				case TagOctetString:
   693					result = innerBytes
   694				default:
   695					// If we don't know how to handle the type, we just leave Value as nil.
   696				}
   697			}
   698			offset += t.length
   699			if err != nil {
   700				return
   701			}
   702			if result != nil {
   703				v.Set(reflect.ValueOf(result))
   704			}
   705			return
   706		}
   707	
   708		t, offset, err := parseTagAndLength(bytes, offset)
   709		if err != nil {
   710			return
   711		}
   712		if params.explicit {
   713			expectedClass := ClassContextSpecific
   714			if params.application {
   715				expectedClass = ClassApplication
   716			}
   717			if offset == len(bytes) {
   718				err = StructuralError{"explicit tag has no child"}
   719				return
   720			}
   721			if t.class == expectedClass && t.tag == *params.tag && (t.length == 0 || t.isCompound) {
   722				if fieldType == rawValueType {
   723					// The inner element should not be parsed for RawValues.
   724				} else if t.length > 0 {
   725					t, offset, err = parseTagAndLength(bytes, offset)
   726					if err != nil {
   727						return
   728					}
   729				} else {
   730					if fieldType != flagType {
   731						err = StructuralError{"zero length explicit tag was not an asn1.Flag"}
   732						return
   733					}
   734					v.SetBool(true)
   735					return
   736				}
   737			} else {
   738				// The tags didn't match, it might be an optional element.
   739				ok := setDefaultValue(v, params)
   740				if ok {
   741					offset = initOffset
   742				} else {
   743					err = StructuralError{"explicitly tagged member didn't match"}
   744				}
   745				return
   746			}
   747		}
   748	
   749		matchAny, universalTag, compoundType, ok1 := getUniversalType(fieldType)
   750		if !ok1 {
   751			err = StructuralError{fmt.Sprintf("unknown Go type: %v", fieldType)}
   752			return
   753		}
   754	
   755		// Special case for strings: all the ASN.1 string types map to the Go
   756		// type string. getUniversalType returns the tag for PrintableString
   757		// when it sees a string, so if we see a different string type on the
   758		// wire, we change the universal type to match.
   759		if universalTag == TagPrintableString {
   760			if t.class == ClassUniversal {
   761				switch t.tag {
   762				case TagIA5String, TagGeneralString, TagT61String, TagUTF8String, TagNumericString:
   763					universalTag = t.tag
   764				}
   765			} else if params.stringType != 0 {
   766				universalTag = params.stringType
   767			}
   768		}
   769	
   770		// Special case for time: UTCTime and GeneralizedTime both map to the
   771		// Go type time.Time.
   772		if universalTag == TagUTCTime && t.tag == TagGeneralizedTime && t.class == ClassUniversal {
   773			universalTag = TagGeneralizedTime
   774		}
   775	
   776		if params.set {
   777			universalTag = TagSet
   778		}
   779	
   780		matchAnyClassAndTag := matchAny
   781		expectedClass := ClassUniversal
   782		expectedTag := universalTag
   783	
   784		if !params.explicit && params.tag != nil {
   785			expectedClass = ClassContextSpecific
   786			expectedTag = *params.tag
   787			matchAnyClassAndTag = false
   788		}
   789	
   790		if !params.explicit && params.application && params.tag != nil {
   791			expectedClass = ClassApplication
   792			expectedTag = *params.tag
   793			matchAnyClassAndTag = false
   794		}
   795	
   796		if !params.explicit && params.private && params.tag != nil {
   797			expectedClass = ClassPrivate
   798			expectedTag = *params.tag
   799			matchAnyClassAndTag = false
   800		}
   801	
   802		// We have unwrapped any explicit tagging at this point.
   803		if !matchAnyClassAndTag && (t.class != expectedClass || t.tag != expectedTag) ||
   804			(!matchAny && t.isCompound != compoundType) {
   805			// Tags don't match. Again, it could be an optional element.
   806			ok := setDefaultValue(v, params)
   807			if ok {
   808				offset = initOffset
   809			} else {
   810				err = StructuralError{fmt.Sprintf("tags don't match (%d vs %+v) %+v %s @%d", expectedTag, t, params, fieldType.Name(), offset)}
   811			}
   812			return
   813		}
   814		if invalidLength(offset, t.length, len(bytes)) {
   815			err = SyntaxError{"data truncated"}
   816			return
   817		}
   818		innerBytes := bytes[offset : offset+t.length]
   819		offset += t.length
   820	
   821		// We deal with the structures defined in this package first.
   822		switch fieldType {
   823		case rawValueType:
   824			result := RawValue{t.class, t.tag, t.isCompound, innerBytes, bytes[initOffset:offset]}
   825			v.Set(reflect.ValueOf(result))
   826			return
   827		case objectIdentifierType:
   828			newSlice, err1 := parseObjectIdentifier(innerBytes)
   829			v.Set(reflect.MakeSlice(v.Type(), len(newSlice), len(newSlice)))
   830			if err1 == nil {
   831				reflect.Copy(v, reflect.ValueOf(newSlice))
   832			}
   833			err = err1
   834			return
   835		case bitStringType:
   836			bs, err1 := parseBitString(innerBytes)
   837			if err1 == nil {
   838				v.Set(reflect.ValueOf(bs))
   839			}
   840			err = err1
   841			return
   842		case timeType:
   843			var time time.Time
   844			var err1 error
   845			if universalTag == TagUTCTime {
   846				time, err1 = parseUTCTime(innerBytes)
   847			} else {
   848				time, err1 = parseGeneralizedTime(innerBytes)
   849			}
   850			if err1 == nil {
   851				v.Set(reflect.ValueOf(time))
   852			}
   853			err = err1
   854			return
   855		case enumeratedType:
   856			parsedInt, err1 := parseInt32(innerBytes)
   857			if err1 == nil {
   858				v.SetInt(int64(parsedInt))
   859			}
   860			err = err1
   861			return
   862		case flagType:
   863			v.SetBool(true)
   864			return
   865		case bigIntType:
   866			parsedInt, err1 := parseBigInt(innerBytes)
   867			if err1 == nil {
   868				v.Set(reflect.ValueOf(parsedInt))
   869			}
   870			err = err1
   871			return
   872		}
   873		switch val := v; val.Kind() {
   874		case reflect.Bool:
   875			parsedBool, err1 := parseBool(innerBytes)
   876			if err1 == nil {
   877				val.SetBool(parsedBool)
   878			}
   879			err = err1
   880			return
   881		case reflect.Int, reflect.Int32, reflect.Int64:
   882			if val.Type().Size() == 4 {
   883				parsedInt, err1 := parseInt32(innerBytes)
   884				if err1 == nil {
   885					val.SetInt(int64(parsedInt))
   886				}
   887				err = err1
   888			} else {
   889				parsedInt, err1 := parseInt64(innerBytes)
   890				if err1 == nil {
   891					val.SetInt(parsedInt)
   892				}
   893				err = err1
   894			}
   895			return
   896		// TODO(dfc) Add support for the remaining integer types
   897		case reflect.Struct:
   898			structType := fieldType
   899	
   900			for i := 0; i < structType.NumField(); i++ {
   901				if structType.Field(i).PkgPath != "" {
   902					err = StructuralError{"struct contains unexported fields"}
   903					return
   904				}
   905			}
   906	
   907			if structType.NumField() > 0 &&
   908				structType.Field(0).Type == rawContentsType {
   909				bytes := bytes[initOffset:offset]
   910				val.Field(0).Set(reflect.ValueOf(RawContent(bytes)))
   911			}
   912	
   913			innerOffset := 0
   914			for i := 0; i < structType.NumField(); i++ {
   915				field := structType.Field(i)
   916				if i == 0 && field.Type == rawContentsType {
   917					continue
   918				}
   919				innerOffset, err = parseField(val.Field(i), innerBytes, innerOffset, parseFieldParameters(field.Tag.Get("asn1")))
   920				if err != nil {
   921					return
   922				}
   923			}
   924			// We allow extra bytes at the end of the SEQUENCE because
   925			// adding elements to the end has been used in X.509 as the
   926			// version numbers have increased.
   927			return
   928		case reflect.Slice:
   929			sliceType := fieldType
   930			if sliceType.Elem().Kind() == reflect.Uint8 {
   931				val.Set(reflect.MakeSlice(sliceType, len(innerBytes), len(innerBytes)))
   932				reflect.Copy(val, reflect.ValueOf(innerBytes))
   933				return
   934			}
   935			newSlice, err1 := parseSequenceOf(innerBytes, sliceType, sliceType.Elem())
   936			if err1 == nil {
   937				val.Set(newSlice)
   938			}
   939			err = err1
   940			return
   941		case reflect.String:
   942			var v string
   943			switch universalTag {
   944			case TagPrintableString:
   945				v, err = parsePrintableString(innerBytes)
   946			case TagNumericString:
   947				v, err = parseNumericString(innerBytes)
   948			case TagIA5String:
   949				v, err = parseIA5String(innerBytes)
   950			case TagT61String:
   951				v, err = parseT61String(innerBytes)
   952			case TagUTF8String:
   953				v, err = parseUTF8String(innerBytes)
   954			case TagGeneralString:
   955				// GeneralString is specified in ISO-2022/ECMA-35,
   956				// A brief review suggests that it includes structures
   957				// that allow the encoding to change midstring and
   958				// such. We give up and pass it as an 8-bit string.
   959				v, err = parseT61String(innerBytes)
   960			default:
   961				err = SyntaxError{fmt.Sprintf("internal error: unknown string type %d", universalTag)}
   962			}
   963			if err == nil {
   964				val.SetString(v)
   965			}
   966			return
   967		}
   968		err = StructuralError{"unsupported: " + v.Type().String()}
   969		return
   970	}
   971	
   972	// canHaveDefaultValue reports whether k is a Kind that we will set a default
   973	// value for. (A signed integer, essentially.)
   974	func canHaveDefaultValue(k reflect.Kind) bool {
   975		switch k {
   976		case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   977			return true
   978		}
   979	
   980		return false
   981	}
   982	
   983	// setDefaultValue is used to install a default value, from a tag string, into
   984	// a Value. It is successful if the field was optional, even if a default value
   985	// wasn't provided or it failed to install it into the Value.
   986	func setDefaultValue(v reflect.Value, params fieldParameters) (ok bool) {
   987		if !params.optional {
   988			return
   989		}
   990		ok = true
   991		if params.defaultValue == nil {
   992			return
   993		}
   994		if canHaveDefaultValue(v.Kind()) {
   995			v.SetInt(*params.defaultValue)
   996		}
   997		return
   998	}
   999	
  1000	// Unmarshal parses the DER-encoded ASN.1 data structure b
  1001	// and uses the reflect package to fill in an arbitrary value pointed at by val.
  1002	// Because Unmarshal uses the reflect package, the structs
  1003	// being written to must use upper case field names.
  1004	//
  1005	// An ASN.1 INTEGER can be written to an int, int32, int64,
  1006	// or *big.Int (from the math/big package).
  1007	// If the encoded value does not fit in the Go type,
  1008	// Unmarshal returns a parse error.
  1009	//
  1010	// An ASN.1 BIT STRING can be written to a BitString.
  1011	//
  1012	// An ASN.1 OCTET STRING can be written to a []byte.
  1013	//
  1014	// An ASN.1 OBJECT IDENTIFIER can be written to an
  1015	// ObjectIdentifier.
  1016	//
  1017	// An ASN.1 ENUMERATED can be written to an Enumerated.
  1018	//
  1019	// An ASN.1 UTCTIME or GENERALIZEDTIME can be written to a time.Time.
  1020	//
  1021	// An ASN.1 PrintableString, IA5String, or NumericString can be written to a string.
  1022	//
  1023	// Any of the above ASN.1 values can be written to an interface{}.
  1024	// The value stored in the interface has the corresponding Go type.
  1025	// For integers, that type is int64.
  1026	//
  1027	// An ASN.1 SEQUENCE OF x or SET OF x can be written
  1028	// to a slice if an x can be written to the slice's element type.
  1029	//
  1030	// An ASN.1 SEQUENCE or SET can be written to a struct
  1031	// if each of the elements in the sequence can be
  1032	// written to the corresponding element in the struct.
  1033	//
  1034	// The following tags on struct fields have special meaning to Unmarshal:
  1035	//
  1036	//	application specifies that an APPLICATION tag is used
  1037	//	private     specifies that a PRIVATE tag is used
  1038	//	default:x   sets the default value for optional integer fields (only used if optional is also present)
  1039	//	explicit    specifies that an additional, explicit tag wraps the implicit one
  1040	//	optional    marks the field as ASN.1 OPTIONAL
  1041	//	set         causes a SET, rather than a SEQUENCE type to be expected
  1042	//	tag:x       specifies the ASN.1 tag number; implies ASN.1 CONTEXT SPECIFIC
  1043	//
  1044	// If the type of the first field of a structure is RawContent then the raw
  1045	// ASN1 contents of the struct will be stored in it.
  1046	//
  1047	// If the type name of a slice element ends with "SET" then it's treated as if
  1048	// the "set" tag was set on it. This can be used with nested slices where a
  1049	// struct tag cannot be given.
  1050	//
  1051	// Other ASN.1 types are not supported; if it encounters them,
  1052	// Unmarshal returns a parse error.
  1053	func Unmarshal(b []byte, val interface{}) (rest []byte, err error) {
  1054		return UnmarshalWithParams(b, val, "")
  1055	}
  1056	
  1057	// UnmarshalWithParams allows field parameters to be specified for the
  1058	// top-level element. The form of the params is the same as the field tags.
  1059	func UnmarshalWithParams(b []byte, val interface{}, params string) (rest []byte, err error) {
  1060		v := reflect.ValueOf(val).Elem()
  1061		offset, err := parseField(v, b, 0, parseFieldParameters(params))
  1062		if err != nil {
  1063			return nil, err
  1064		}
  1065		return b[offset:], nil
  1066	}
  1067	

View as plain text