...

Source file src/pkg/crypto/tls/key_schedule.go

     1	// Copyright 2018 The Go Authors. All rights reserved.
     2	// Use of this source code is governed by a BSD-style
     3	// license that can be found in the LICENSE file.
     4	
     5	package tls
     6	
     7	import (
     8		"crypto/elliptic"
     9		"crypto/hmac"
    10		"crypto/subtle"
    11		"errors"
    12		"golang.org/x/crypto/cryptobyte"
    13		"golang.org/x/crypto/curve25519"
    14		"golang.org/x/crypto/hkdf"
    15		"hash"
    16		"io"
    17		"math/big"
    18	)
    19	
    20	// This file contains the functions necessary to compute the TLS 1.3 key
    21	// schedule. See RFC 8446, Section 7.
    22	
    23	const (
    24		resumptionBinderLabel         = "res binder"
    25		clientHandshakeTrafficLabel   = "c hs traffic"
    26		serverHandshakeTrafficLabel   = "s hs traffic"
    27		clientApplicationTrafficLabel = "c ap traffic"
    28		serverApplicationTrafficLabel = "s ap traffic"
    29		exporterLabel                 = "exp master"
    30		resumptionLabel               = "res master"
    31		trafficUpdateLabel            = "traffic upd"
    32	)
    33	
    34	// expandLabel implements HKDF-Expand-Label from RFC 8446, Section 7.1.
    35	func (c *cipherSuiteTLS13) expandLabel(secret []byte, label string, context []byte, length int) []byte {
    36		var hkdfLabel cryptobyte.Builder
    37		hkdfLabel.AddUint16(uint16(length))
    38		hkdfLabel.AddUint8LengthPrefixed(func(b *cryptobyte.Builder) {
    39			b.AddBytes([]byte("tls13 "))
    40			b.AddBytes([]byte(label))
    41		})
    42		hkdfLabel.AddUint8LengthPrefixed(func(b *cryptobyte.Builder) {
    43			b.AddBytes(context)
    44		})
    45		out := make([]byte, length)
    46		n, err := hkdf.Expand(c.hash.New, secret, hkdfLabel.BytesOrPanic()).Read(out)
    47		if err != nil || n != length {
    48			panic("tls: HKDF-Expand-Label invocation failed unexpectedly")
    49		}
    50		return out
    51	}
    52	
    53	// deriveSecret implements Derive-Secret from RFC 8446, Section 7.1.
    54	func (c *cipherSuiteTLS13) deriveSecret(secret []byte, label string, transcript hash.Hash) []byte {
    55		if transcript == nil {
    56			transcript = c.hash.New()
    57		}
    58		return c.expandLabel(secret, label, transcript.Sum(nil), c.hash.Size())
    59	}
    60	
    61	// extract implements HKDF-Extract with the cipher suite hash.
    62	func (c *cipherSuiteTLS13) extract(newSecret, currentSecret []byte) []byte {
    63		if newSecret == nil {
    64			newSecret = make([]byte, c.hash.Size())
    65		}
    66		return hkdf.Extract(c.hash.New, newSecret, currentSecret)
    67	}
    68	
    69	// nextTrafficSecret generates the next traffic secret, given the current one,
    70	// according to RFC 8446, Section 7.2.
    71	func (c *cipherSuiteTLS13) nextTrafficSecret(trafficSecret []byte) []byte {
    72		return c.expandLabel(trafficSecret, trafficUpdateLabel, nil, c.hash.Size())
    73	}
    74	
    75	// trafficKey generates traffic keys according to RFC 8446, Section 7.3.
    76	func (c *cipherSuiteTLS13) trafficKey(trafficSecret []byte) (key, iv []byte) {
    77		key = c.expandLabel(trafficSecret, "key", nil, c.keyLen)
    78		iv = c.expandLabel(trafficSecret, "iv", nil, aeadNonceLength)
    79		return
    80	}
    81	
    82	// finishedHash generates the Finished verify_data or PskBinderEntry according
    83	// to RFC 8446, Section 4.4.4. See sections 4.4 and 4.2.11.2 for the baseKey
    84	// selection.
    85	func (c *cipherSuiteTLS13) finishedHash(baseKey []byte, transcript hash.Hash) []byte {
    86		finishedKey := c.expandLabel(baseKey, "finished", nil, c.hash.Size())
    87		verifyData := hmac.New(c.hash.New, finishedKey)
    88		verifyData.Write(transcript.Sum(nil))
    89		return verifyData.Sum(nil)
    90	}
    91	
    92	// exportKeyingMaterial implements RFC5705 exporters for TLS 1.3 according to
    93	// RFC 8446, Section 7.5.
    94	func (c *cipherSuiteTLS13) exportKeyingMaterial(masterSecret []byte, transcript hash.Hash) func(string, []byte, int) ([]byte, error) {
    95		expMasterSecret := c.deriveSecret(masterSecret, exporterLabel, transcript)
    96		return func(label string, context []byte, length int) ([]byte, error) {
    97			secret := c.deriveSecret(expMasterSecret, label, nil)
    98			h := c.hash.New()
    99			h.Write(context)
   100			return c.expandLabel(secret, "exporter", h.Sum(nil), length), nil
   101		}
   102	}
   103	
   104	// ecdheParameters implements Diffie-Hellman with either NIST curves or X25519,
   105	// according to RFC 8446, Section 4.2.8.2.
   106	type ecdheParameters interface {
   107		CurveID() CurveID
   108		PublicKey() []byte
   109		SharedKey(peerPublicKey []byte) []byte
   110	}
   111	
   112	func generateECDHEParameters(rand io.Reader, curveID CurveID) (ecdheParameters, error) {
   113		if curveID == X25519 {
   114			p := &x25519Parameters{}
   115			if _, err := io.ReadFull(rand, p.privateKey[:]); err != nil {
   116				return nil, err
   117			}
   118			curve25519.ScalarBaseMult(&p.publicKey, &p.privateKey)
   119			return p, nil
   120		}
   121	
   122		curve, ok := curveForCurveID(curveID)
   123		if !ok {
   124			return nil, errors.New("tls: internal error: unsupported curve")
   125		}
   126	
   127		p := &nistParameters{curveID: curveID}
   128		var err error
   129		p.privateKey, p.x, p.y, err = elliptic.GenerateKey(curve, rand)
   130		if err != nil {
   131			return nil, err
   132		}
   133		return p, nil
   134	}
   135	
   136	func curveForCurveID(id CurveID) (elliptic.Curve, bool) {
   137		switch id {
   138		case CurveP256:
   139			return elliptic.P256(), true
   140		case CurveP384:
   141			return elliptic.P384(), true
   142		case CurveP521:
   143			return elliptic.P521(), true
   144		default:
   145			return nil, false
   146		}
   147	}
   148	
   149	type nistParameters struct {
   150		privateKey []byte
   151		x, y       *big.Int // public key
   152		curveID    CurveID
   153	}
   154	
   155	func (p *nistParameters) CurveID() CurveID {
   156		return p.curveID
   157	}
   158	
   159	func (p *nistParameters) PublicKey() []byte {
   160		curve, _ := curveForCurveID(p.curveID)
   161		return elliptic.Marshal(curve, p.x, p.y)
   162	}
   163	
   164	func (p *nistParameters) SharedKey(peerPublicKey []byte) []byte {
   165		curve, _ := curveForCurveID(p.curveID)
   166		// Unmarshal also checks whether the given point is on the curve.
   167		x, y := elliptic.Unmarshal(curve, peerPublicKey)
   168		if x == nil {
   169			return nil
   170		}
   171	
   172		xShared, _ := curve.ScalarMult(x, y, p.privateKey)
   173		sharedKey := make([]byte, (curve.Params().BitSize+7)>>3)
   174		xBytes := xShared.Bytes()
   175		copy(sharedKey[len(sharedKey)-len(xBytes):], xBytes)
   176	
   177		return sharedKey
   178	}
   179	
   180	type x25519Parameters struct {
   181		privateKey [32]byte
   182		publicKey  [32]byte
   183	}
   184	
   185	func (p *x25519Parameters) CurveID() CurveID {
   186		return X25519
   187	}
   188	
   189	func (p *x25519Parameters) PublicKey() []byte {
   190		return p.publicKey[:]
   191	}
   192	
   193	func (p *x25519Parameters) SharedKey(peerPublicKey []byte) []byte {
   194		if len(peerPublicKey) != 32 {
   195			return nil
   196		}
   197	
   198		var theirPublicKey, sharedKey [32]byte
   199		copy(theirPublicKey[:], peerPublicKey)
   200		curve25519.ScalarMult(&sharedKey, &p.privateKey, &theirPublicKey)
   201	
   202		// Check for low-order inputs. See RFC 8422, Section 5.11.
   203		var allZeroes [32]byte
   204		if subtle.ConstantTimeCompare(allZeroes[:], sharedKey[:]) == 1 {
   205			return nil
   206		}
   207	
   208		return sharedKey[:]
   209	}
   210	

View as plain text