...

Source file src/pkg/crypto/tls/conn.go

     1	// Copyright 2010 The Go Authors. All rights reserved.
     2	// Use of this source code is governed by a BSD-style
     3	// license that can be found in the LICENSE file.
     4	
     5	// TLS low level connection and record layer
     6	
     7	package tls
     8	
     9	import (
    10		"bytes"
    11		"crypto/cipher"
    12		"crypto/subtle"
    13		"crypto/x509"
    14		"errors"
    15		"fmt"
    16		"io"
    17		"net"
    18		"sync"
    19		"sync/atomic"
    20		"time"
    21	)
    22	
    23	// A Conn represents a secured connection.
    24	// It implements the net.Conn interface.
    25	type Conn struct {
    26		// constant
    27		conn     net.Conn
    28		isClient bool
    29	
    30		// handshakeStatus is 1 if the connection is currently transferring
    31		// application data (i.e. is not currently processing a handshake).
    32		// This field is only to be accessed with sync/atomic.
    33		handshakeStatus uint32
    34		// constant after handshake; protected by handshakeMutex
    35		handshakeMutex sync.Mutex
    36		handshakeErr   error   // error resulting from handshake
    37		vers           uint16  // TLS version
    38		haveVers       bool    // version has been negotiated
    39		config         *Config // configuration passed to constructor
    40		// handshakes counts the number of handshakes performed on the
    41		// connection so far. If renegotiation is disabled then this is either
    42		// zero or one.
    43		handshakes       int
    44		didResume        bool // whether this connection was a session resumption
    45		cipherSuite      uint16
    46		ocspResponse     []byte   // stapled OCSP response
    47		scts             [][]byte // signed certificate timestamps from server
    48		peerCertificates []*x509.Certificate
    49		// verifiedChains contains the certificate chains that we built, as
    50		// opposed to the ones presented by the server.
    51		verifiedChains [][]*x509.Certificate
    52		// serverName contains the server name indicated by the client, if any.
    53		serverName string
    54		// secureRenegotiation is true if the server echoed the secure
    55		// renegotiation extension. (This is meaningless as a server because
    56		// renegotiation is not supported in that case.)
    57		secureRenegotiation bool
    58		// ekm is a closure for exporting keying material.
    59		ekm func(label string, context []byte, length int) ([]byte, error)
    60		// resumptionSecret is the resumption_master_secret for handling
    61		// NewSessionTicket messages. nil if config.SessionTicketsDisabled.
    62		resumptionSecret []byte
    63	
    64		// clientFinishedIsFirst is true if the client sent the first Finished
    65		// message during the most recent handshake. This is recorded because
    66		// the first transmitted Finished message is the tls-unique
    67		// channel-binding value.
    68		clientFinishedIsFirst bool
    69	
    70		// closeNotifyErr is any error from sending the alertCloseNotify record.
    71		closeNotifyErr error
    72		// closeNotifySent is true if the Conn attempted to send an
    73		// alertCloseNotify record.
    74		closeNotifySent bool
    75	
    76		// clientFinished and serverFinished contain the Finished message sent
    77		// by the client or server in the most recent handshake. This is
    78		// retained to support the renegotiation extension and tls-unique
    79		// channel-binding.
    80		clientFinished [12]byte
    81		serverFinished [12]byte
    82	
    83		clientProtocol         string
    84		clientProtocolFallback bool
    85	
    86		// input/output
    87		in, out   halfConn
    88		rawInput  bytes.Buffer // raw input, starting with a record header
    89		input     bytes.Reader // application data waiting to be read, from rawInput.Next
    90		hand      bytes.Buffer // handshake data waiting to be read
    91		outBuf    []byte       // scratch buffer used by out.encrypt
    92		buffering bool         // whether records are buffered in sendBuf
    93		sendBuf   []byte       // a buffer of records waiting to be sent
    94	
    95		// bytesSent counts the bytes of application data sent.
    96		// packetsSent counts packets.
    97		bytesSent   int64
    98		packetsSent int64
    99	
   100		// retryCount counts the number of consecutive non-advancing records
   101		// received by Conn.readRecord. That is, records that neither advance the
   102		// handshake, nor deliver application data. Protected by in.Mutex.
   103		retryCount int
   104	
   105		// activeCall is an atomic int32; the low bit is whether Close has
   106		// been called. the rest of the bits are the number of goroutines
   107		// in Conn.Write.
   108		activeCall int32
   109	
   110		tmp [16]byte
   111	}
   112	
   113	// Access to net.Conn methods.
   114	// Cannot just embed net.Conn because that would
   115	// export the struct field too.
   116	
   117	// LocalAddr returns the local network address.
   118	func (c *Conn) LocalAddr() net.Addr {
   119		return c.conn.LocalAddr()
   120	}
   121	
   122	// RemoteAddr returns the remote network address.
   123	func (c *Conn) RemoteAddr() net.Addr {
   124		return c.conn.RemoteAddr()
   125	}
   126	
   127	// SetDeadline sets the read and write deadlines associated with the connection.
   128	// A zero value for t means Read and Write will not time out.
   129	// After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
   130	func (c *Conn) SetDeadline(t time.Time) error {
   131		return c.conn.SetDeadline(t)
   132	}
   133	
   134	// SetReadDeadline sets the read deadline on the underlying connection.
   135	// A zero value for t means Read will not time out.
   136	func (c *Conn) SetReadDeadline(t time.Time) error {
   137		return c.conn.SetReadDeadline(t)
   138	}
   139	
   140	// SetWriteDeadline sets the write deadline on the underlying connection.
   141	// A zero value for t means Write will not time out.
   142	// After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
   143	func (c *Conn) SetWriteDeadline(t time.Time) error {
   144		return c.conn.SetWriteDeadline(t)
   145	}
   146	
   147	// A halfConn represents one direction of the record layer
   148	// connection, either sending or receiving.
   149	type halfConn struct {
   150		sync.Mutex
   151	
   152		err            error       // first permanent error
   153		version        uint16      // protocol version
   154		cipher         interface{} // cipher algorithm
   155		mac            macFunction
   156		seq            [8]byte  // 64-bit sequence number
   157		additionalData [13]byte // to avoid allocs; interface method args escape
   158	
   159		nextCipher interface{} // next encryption state
   160		nextMac    macFunction // next MAC algorithm
   161	
   162		trafficSecret []byte // current TLS 1.3 traffic secret
   163	}
   164	
   165	func (hc *halfConn) setErrorLocked(err error) error {
   166		hc.err = err
   167		return err
   168	}
   169	
   170	// prepareCipherSpec sets the encryption and MAC states
   171	// that a subsequent changeCipherSpec will use.
   172	func (hc *halfConn) prepareCipherSpec(version uint16, cipher interface{}, mac macFunction) {
   173		hc.version = version
   174		hc.nextCipher = cipher
   175		hc.nextMac = mac
   176	}
   177	
   178	// changeCipherSpec changes the encryption and MAC states
   179	// to the ones previously passed to prepareCipherSpec.
   180	func (hc *halfConn) changeCipherSpec() error {
   181		if hc.nextCipher == nil || hc.version == VersionTLS13 {
   182			return alertInternalError
   183		}
   184		hc.cipher = hc.nextCipher
   185		hc.mac = hc.nextMac
   186		hc.nextCipher = nil
   187		hc.nextMac = nil
   188		for i := range hc.seq {
   189			hc.seq[i] = 0
   190		}
   191		return nil
   192	}
   193	
   194	func (hc *halfConn) setTrafficSecret(suite *cipherSuiteTLS13, secret []byte) {
   195		hc.trafficSecret = secret
   196		key, iv := suite.trafficKey(secret)
   197		hc.cipher = suite.aead(key, iv)
   198		for i := range hc.seq {
   199			hc.seq[i] = 0
   200		}
   201	}
   202	
   203	// incSeq increments the sequence number.
   204	func (hc *halfConn) incSeq() {
   205		for i := 7; i >= 0; i-- {
   206			hc.seq[i]++
   207			if hc.seq[i] != 0 {
   208				return
   209			}
   210		}
   211	
   212		// Not allowed to let sequence number wrap.
   213		// Instead, must renegotiate before it does.
   214		// Not likely enough to bother.
   215		panic("TLS: sequence number wraparound")
   216	}
   217	
   218	// explicitNonceLen returns the number of bytes of explicit nonce or IV included
   219	// in each record. Explicit nonces are present only in CBC modes after TLS 1.0
   220	// and in certain AEAD modes in TLS 1.2.
   221	func (hc *halfConn) explicitNonceLen() int {
   222		if hc.cipher == nil {
   223			return 0
   224		}
   225	
   226		switch c := hc.cipher.(type) {
   227		case cipher.Stream:
   228			return 0
   229		case aead:
   230			return c.explicitNonceLen()
   231		case cbcMode:
   232			// TLS 1.1 introduced a per-record explicit IV to fix the BEAST attack.
   233			if hc.version >= VersionTLS11 {
   234				return c.BlockSize()
   235			}
   236			return 0
   237		default:
   238			panic("unknown cipher type")
   239		}
   240	}
   241	
   242	// extractPadding returns, in constant time, the length of the padding to remove
   243	// from the end of payload. It also returns a byte which is equal to 255 if the
   244	// padding was valid and 0 otherwise. See RFC 2246, Section 6.2.3.2.
   245	func extractPadding(payload []byte) (toRemove int, good byte) {
   246		if len(payload) < 1 {
   247			return 0, 0
   248		}
   249	
   250		paddingLen := payload[len(payload)-1]
   251		t := uint(len(payload)-1) - uint(paddingLen)
   252		// if len(payload) >= (paddingLen - 1) then the MSB of t is zero
   253		good = byte(int32(^t) >> 31)
   254	
   255		// The maximum possible padding length plus the actual length field
   256		toCheck := 256
   257		// The length of the padded data is public, so we can use an if here
   258		if toCheck > len(payload) {
   259			toCheck = len(payload)
   260		}
   261	
   262		for i := 0; i < toCheck; i++ {
   263			t := uint(paddingLen) - uint(i)
   264			// if i <= paddingLen then the MSB of t is zero
   265			mask := byte(int32(^t) >> 31)
   266			b := payload[len(payload)-1-i]
   267			good &^= mask&paddingLen ^ mask&b
   268		}
   269	
   270		// We AND together the bits of good and replicate the result across
   271		// all the bits.
   272		good &= good << 4
   273		good &= good << 2
   274		good &= good << 1
   275		good = uint8(int8(good) >> 7)
   276	
   277		// Zero the padding length on error. This ensures any unchecked bytes
   278		// are included in the MAC. Otherwise, an attacker that could
   279		// distinguish MAC failures from padding failures could mount an attack
   280		// similar to POODLE in SSL 3.0: given a good ciphertext that uses a
   281		// full block's worth of padding, replace the final block with another
   282		// block. If the MAC check passed but the padding check failed, the
   283		// last byte of that block decrypted to the block size.
   284		//
   285		// See also macAndPaddingGood logic below.
   286		paddingLen &= good
   287	
   288		toRemove = int(paddingLen) + 1
   289		return
   290	}
   291	
   292	// extractPaddingSSL30 is a replacement for extractPadding in the case that the
   293	// protocol version is SSLv3. In this version, the contents of the padding
   294	// are random and cannot be checked.
   295	func extractPaddingSSL30(payload []byte) (toRemove int, good byte) {
   296		if len(payload) < 1 {
   297			return 0, 0
   298		}
   299	
   300		paddingLen := int(payload[len(payload)-1]) + 1
   301		if paddingLen > len(payload) {
   302			return 0, 0
   303		}
   304	
   305		return paddingLen, 255
   306	}
   307	
   308	func roundUp(a, b int) int {
   309		return a + (b-a%b)%b
   310	}
   311	
   312	// cbcMode is an interface for block ciphers using cipher block chaining.
   313	type cbcMode interface {
   314		cipher.BlockMode
   315		SetIV([]byte)
   316	}
   317	
   318	// decrypt authenticates and decrypts the record if protection is active at
   319	// this stage. The returned plaintext might overlap with the input.
   320	func (hc *halfConn) decrypt(record []byte) ([]byte, recordType, error) {
   321		var plaintext []byte
   322		typ := recordType(record[0])
   323		payload := record[recordHeaderLen:]
   324	
   325		// In TLS 1.3, change_cipher_spec messages are to be ignored without being
   326		// decrypted. See RFC 8446, Appendix D.4.
   327		if hc.version == VersionTLS13 && typ == recordTypeChangeCipherSpec {
   328			return payload, typ, nil
   329		}
   330	
   331		paddingGood := byte(255)
   332		paddingLen := 0
   333	
   334		explicitNonceLen := hc.explicitNonceLen()
   335	
   336		if hc.cipher != nil {
   337			switch c := hc.cipher.(type) {
   338			case cipher.Stream:
   339				c.XORKeyStream(payload, payload)
   340			case aead:
   341				if len(payload) < explicitNonceLen {
   342					return nil, 0, alertBadRecordMAC
   343				}
   344				nonce := payload[:explicitNonceLen]
   345				if len(nonce) == 0 {
   346					nonce = hc.seq[:]
   347				}
   348				payload = payload[explicitNonceLen:]
   349	
   350				additionalData := hc.additionalData[:]
   351				if hc.version == VersionTLS13 {
   352					additionalData = record[:recordHeaderLen]
   353				} else {
   354					copy(additionalData, hc.seq[:])
   355					copy(additionalData[8:], record[:3])
   356					n := len(payload) - c.Overhead()
   357					additionalData[11] = byte(n >> 8)
   358					additionalData[12] = byte(n)
   359				}
   360	
   361				var err error
   362				plaintext, err = c.Open(payload[:0], nonce, payload, additionalData)
   363				if err != nil {
   364					return nil, 0, alertBadRecordMAC
   365				}
   366			case cbcMode:
   367				blockSize := c.BlockSize()
   368				minPayload := explicitNonceLen + roundUp(hc.mac.Size()+1, blockSize)
   369				if len(payload)%blockSize != 0 || len(payload) < minPayload {
   370					return nil, 0, alertBadRecordMAC
   371				}
   372	
   373				if explicitNonceLen > 0 {
   374					c.SetIV(payload[:explicitNonceLen])
   375					payload = payload[explicitNonceLen:]
   376				}
   377				c.CryptBlocks(payload, payload)
   378	
   379				// In a limited attempt to protect against CBC padding oracles like
   380				// Lucky13, the data past paddingLen (which is secret) is passed to
   381				// the MAC function as extra data, to be fed into the HMAC after
   382				// computing the digest. This makes the MAC roughly constant time as
   383				// long as the digest computation is constant time and does not
   384				// affect the subsequent write, modulo cache effects.
   385				if hc.version == VersionSSL30 {
   386					paddingLen, paddingGood = extractPaddingSSL30(payload)
   387				} else {
   388					paddingLen, paddingGood = extractPadding(payload)
   389				}
   390			default:
   391				panic("unknown cipher type")
   392			}
   393	
   394			if hc.version == VersionTLS13 {
   395				if typ != recordTypeApplicationData {
   396					return nil, 0, alertUnexpectedMessage
   397				}
   398				if len(plaintext) > maxPlaintext+1 {
   399					return nil, 0, alertRecordOverflow
   400				}
   401				// Remove padding and find the ContentType scanning from the end.
   402				for i := len(plaintext) - 1; i >= 0; i-- {
   403					if plaintext[i] != 0 {
   404						typ = recordType(plaintext[i])
   405						plaintext = plaintext[:i]
   406						break
   407					}
   408					if i == 0 {
   409						return nil, 0, alertUnexpectedMessage
   410					}
   411				}
   412			}
   413		} else {
   414			plaintext = payload
   415		}
   416	
   417		if hc.mac != nil {
   418			macSize := hc.mac.Size()
   419			if len(payload) < macSize {
   420				return nil, 0, alertBadRecordMAC
   421			}
   422	
   423			n := len(payload) - macSize - paddingLen
   424			n = subtle.ConstantTimeSelect(int(uint32(n)>>31), 0, n) // if n < 0 { n = 0 }
   425			record[3] = byte(n >> 8)
   426			record[4] = byte(n)
   427			remoteMAC := payload[n : n+macSize]
   428			localMAC := hc.mac.MAC(hc.seq[0:], record[:recordHeaderLen], payload[:n], payload[n+macSize:])
   429	
   430			// This is equivalent to checking the MACs and paddingGood
   431			// separately, but in constant-time to prevent distinguishing
   432			// padding failures from MAC failures. Depending on what value
   433			// of paddingLen was returned on bad padding, distinguishing
   434			// bad MAC from bad padding can lead to an attack.
   435			//
   436			// See also the logic at the end of extractPadding.
   437			macAndPaddingGood := subtle.ConstantTimeCompare(localMAC, remoteMAC) & int(paddingGood)
   438			if macAndPaddingGood != 1 {
   439				return nil, 0, alertBadRecordMAC
   440			}
   441	
   442			plaintext = payload[:n]
   443		}
   444	
   445		hc.incSeq()
   446		return plaintext, typ, nil
   447	}
   448	
   449	// sliceForAppend extends the input slice by n bytes. head is the full extended
   450	// slice, while tail is the appended part. If the original slice has sufficient
   451	// capacity no allocation is performed.
   452	func sliceForAppend(in []byte, n int) (head, tail []byte) {
   453		if total := len(in) + n; cap(in) >= total {
   454			head = in[:total]
   455		} else {
   456			head = make([]byte, total)
   457			copy(head, in)
   458		}
   459		tail = head[len(in):]
   460		return
   461	}
   462	
   463	// encrypt encrypts payload, adding the appropriate nonce and/or MAC, and
   464	// appends it to record, which contains the record header.
   465	func (hc *halfConn) encrypt(record, payload []byte, rand io.Reader) ([]byte, error) {
   466		if hc.cipher == nil {
   467			return append(record, payload...), nil
   468		}
   469	
   470		var explicitNonce []byte
   471		if explicitNonceLen := hc.explicitNonceLen(); explicitNonceLen > 0 {
   472			record, explicitNonce = sliceForAppend(record, explicitNonceLen)
   473			if _, isCBC := hc.cipher.(cbcMode); !isCBC && explicitNonceLen < 16 {
   474				// The AES-GCM construction in TLS has an explicit nonce so that the
   475				// nonce can be random. However, the nonce is only 8 bytes which is
   476				// too small for a secure, random nonce. Therefore we use the
   477				// sequence number as the nonce. The 3DES-CBC construction also has
   478				// an 8 bytes nonce but its nonces must be unpredictable (see RFC
   479				// 5246, Appendix F.3), forcing us to use randomness. That's not
   480				// 3DES' biggest problem anyway because the birthday bound on block
   481				// collision is reached first due to its simlarly small block size
   482				// (see the Sweet32 attack).
   483				copy(explicitNonce, hc.seq[:])
   484			} else {
   485				if _, err := io.ReadFull(rand, explicitNonce); err != nil {
   486					return nil, err
   487				}
   488			}
   489		}
   490	
   491		var mac []byte
   492		if hc.mac != nil {
   493			mac = hc.mac.MAC(hc.seq[:], record[:recordHeaderLen], payload, nil)
   494		}
   495	
   496		var dst []byte
   497		switch c := hc.cipher.(type) {
   498		case cipher.Stream:
   499			record, dst = sliceForAppend(record, len(payload)+len(mac))
   500			c.XORKeyStream(dst[:len(payload)], payload)
   501			c.XORKeyStream(dst[len(payload):], mac)
   502		case aead:
   503			nonce := explicitNonce
   504			if len(nonce) == 0 {
   505				nonce = hc.seq[:]
   506			}
   507	
   508			if hc.version == VersionTLS13 {
   509				record = append(record, payload...)
   510	
   511				// Encrypt the actual ContentType and replace the plaintext one.
   512				record = append(record, record[0])
   513				record[0] = byte(recordTypeApplicationData)
   514	
   515				n := len(payload) + 1 + c.Overhead()
   516				record[3] = byte(n >> 8)
   517				record[4] = byte(n)
   518	
   519				record = c.Seal(record[:recordHeaderLen],
   520					nonce, record[recordHeaderLen:], record[:recordHeaderLen])
   521			} else {
   522				copy(hc.additionalData[:], hc.seq[:])
   523				copy(hc.additionalData[8:], record)
   524				record = c.Seal(record, nonce, payload, hc.additionalData[:])
   525			}
   526		case cbcMode:
   527			blockSize := c.BlockSize()
   528			plaintextLen := len(payload) + len(mac)
   529			paddingLen := blockSize - plaintextLen%blockSize
   530			record, dst = sliceForAppend(record, plaintextLen+paddingLen)
   531			copy(dst, payload)
   532			copy(dst[len(payload):], mac)
   533			for i := plaintextLen; i < len(dst); i++ {
   534				dst[i] = byte(paddingLen - 1)
   535			}
   536			if len(explicitNonce) > 0 {
   537				c.SetIV(explicitNonce)
   538			}
   539			c.CryptBlocks(dst, dst)
   540		default:
   541			panic("unknown cipher type")
   542		}
   543	
   544		// Update length to include nonce, MAC and any block padding needed.
   545		n := len(record) - recordHeaderLen
   546		record[3] = byte(n >> 8)
   547		record[4] = byte(n)
   548		hc.incSeq()
   549	
   550		return record, nil
   551	}
   552	
   553	// RecordHeaderError is returned when a TLS record header is invalid.
   554	type RecordHeaderError struct {
   555		// Msg contains a human readable string that describes the error.
   556		Msg string
   557		// RecordHeader contains the five bytes of TLS record header that
   558		// triggered the error.
   559		RecordHeader [5]byte
   560		// Conn provides the underlying net.Conn in the case that a client
   561		// sent an initial handshake that didn't look like TLS.
   562		// It is nil if there's already been a handshake or a TLS alert has
   563		// been written to the connection.
   564		Conn net.Conn
   565	}
   566	
   567	func (e RecordHeaderError) Error() string { return "tls: " + e.Msg }
   568	
   569	func (c *Conn) newRecordHeaderError(conn net.Conn, msg string) (err RecordHeaderError) {
   570		err.Msg = msg
   571		err.Conn = conn
   572		copy(err.RecordHeader[:], c.rawInput.Bytes())
   573		return err
   574	}
   575	
   576	func (c *Conn) readRecord() error {
   577		return c.readRecordOrCCS(false)
   578	}
   579	
   580	func (c *Conn) readChangeCipherSpec() error {
   581		return c.readRecordOrCCS(true)
   582	}
   583	
   584	// readRecordOrCCS reads one or more TLS records from the connection and
   585	// updates the record layer state. Some invariants:
   586	//   * c.in must be locked
   587	//   * c.input must be empty
   588	// During the handshake one and only one of the following will happen:
   589	//   - c.hand grows
   590	//   - c.in.changeCipherSpec is called
   591	//   - an error is returned
   592	// After the handshake one and only one of the following will happen:
   593	//   - c.hand grows
   594	//   - c.input is set
   595	//   - an error is returned
   596	func (c *Conn) readRecordOrCCS(expectChangeCipherSpec bool) error {
   597		if c.in.err != nil {
   598			return c.in.err
   599		}
   600		handshakeComplete := c.handshakeComplete()
   601	
   602		// This function modifies c.rawInput, which owns the c.input memory.
   603		if c.input.Len() != 0 {
   604			return c.in.setErrorLocked(errors.New("tls: internal error: attempted to read record with pending application data"))
   605		}
   606		c.input.Reset(nil)
   607	
   608		// Read header, payload.
   609		if err := c.readFromUntil(c.conn, recordHeaderLen); err != nil {
   610			// RFC 8446, Section 6.1 suggests that EOF without an alertCloseNotify
   611			// is an error, but popular web sites seem to do this, so we accept it
   612			// if and only if at the record boundary.
   613			if err == io.ErrUnexpectedEOF && c.rawInput.Len() == 0 {
   614				err = io.EOF
   615			}
   616			if e, ok := err.(net.Error); !ok || !e.Temporary() {
   617				c.in.setErrorLocked(err)
   618			}
   619			return err
   620		}
   621		hdr := c.rawInput.Bytes()[:recordHeaderLen]
   622		typ := recordType(hdr[0])
   623	
   624		// No valid TLS record has a type of 0x80, however SSLv2 handshakes
   625		// start with a uint16 length where the MSB is set and the first record
   626		// is always < 256 bytes long. Therefore typ == 0x80 strongly suggests
   627		// an SSLv2 client.
   628		if !handshakeComplete && typ == 0x80 {
   629			c.sendAlert(alertProtocolVersion)
   630			return c.in.setErrorLocked(c.newRecordHeaderError(nil, "unsupported SSLv2 handshake received"))
   631		}
   632	
   633		vers := uint16(hdr[1])<<8 | uint16(hdr[2])
   634		n := int(hdr[3])<<8 | int(hdr[4])
   635		if c.haveVers && c.vers != VersionTLS13 && vers != c.vers {
   636			c.sendAlert(alertProtocolVersion)
   637			msg := fmt.Sprintf("received record with version %x when expecting version %x", vers, c.vers)
   638			return c.in.setErrorLocked(c.newRecordHeaderError(nil, msg))
   639		}
   640		if !c.haveVers {
   641			// First message, be extra suspicious: this might not be a TLS
   642			// client. Bail out before reading a full 'body', if possible.
   643			// The current max version is 3.3 so if the version is >= 16.0,
   644			// it's probably not real.
   645			if (typ != recordTypeAlert && typ != recordTypeHandshake) || vers >= 0x1000 {
   646				return c.in.setErrorLocked(c.newRecordHeaderError(c.conn, "first record does not look like a TLS handshake"))
   647			}
   648		}
   649		if c.vers == VersionTLS13 && n > maxCiphertextTLS13 || n > maxCiphertext {
   650			c.sendAlert(alertRecordOverflow)
   651			msg := fmt.Sprintf("oversized record received with length %d", n)
   652			return c.in.setErrorLocked(c.newRecordHeaderError(nil, msg))
   653		}
   654		if err := c.readFromUntil(c.conn, recordHeaderLen+n); err != nil {
   655			if e, ok := err.(net.Error); !ok || !e.Temporary() {
   656				c.in.setErrorLocked(err)
   657			}
   658			return err
   659		}
   660	
   661		// Process message.
   662		record := c.rawInput.Next(recordHeaderLen + n)
   663		data, typ, err := c.in.decrypt(record)
   664		if err != nil {
   665			return c.in.setErrorLocked(c.sendAlert(err.(alert)))
   666		}
   667		if len(data) > maxPlaintext {
   668			return c.in.setErrorLocked(c.sendAlert(alertRecordOverflow))
   669		}
   670	
   671		// Application Data messages are always protected.
   672		if c.in.cipher == nil && typ == recordTypeApplicationData {
   673			return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   674		}
   675	
   676		if typ != recordTypeAlert && typ != recordTypeChangeCipherSpec && len(data) > 0 {
   677			// This is a state-advancing message: reset the retry count.
   678			c.retryCount = 0
   679		}
   680	
   681		// Handshake messages MUST NOT be interleaved with other record types in TLS 1.3.
   682		if c.vers == VersionTLS13 && typ != recordTypeHandshake && c.hand.Len() > 0 {
   683			return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   684		}
   685	
   686		switch typ {
   687		default:
   688			return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   689	
   690		case recordTypeAlert:
   691			if len(data) != 2 {
   692				return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   693			}
   694			if alert(data[1]) == alertCloseNotify {
   695				return c.in.setErrorLocked(io.EOF)
   696			}
   697			if c.vers == VersionTLS13 {
   698				return c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])})
   699			}
   700			switch data[0] {
   701			case alertLevelWarning:
   702				// Drop the record on the floor and retry.
   703				return c.retryReadRecord(expectChangeCipherSpec)
   704			case alertLevelError:
   705				return c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])})
   706			default:
   707				return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   708			}
   709	
   710		case recordTypeChangeCipherSpec:
   711			if len(data) != 1 || data[0] != 1 {
   712				return c.in.setErrorLocked(c.sendAlert(alertDecodeError))
   713			}
   714			// Handshake messages are not allowed to fragment across the CCS.
   715			if c.hand.Len() > 0 {
   716				return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   717			}
   718			// In TLS 1.3, change_cipher_spec records are ignored until the
   719			// Finished. See RFC 8446, Appendix D.4. Note that according to Section
   720			// 5, a server can send a ChangeCipherSpec before its ServerHello, when
   721			// c.vers is still unset. That's not useful though and suspicious if the
   722			// server then selects a lower protocol version, so don't allow that.
   723			if c.vers == VersionTLS13 {
   724				return c.retryReadRecord(expectChangeCipherSpec)
   725			}
   726			if !expectChangeCipherSpec {
   727				return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   728			}
   729			if err := c.in.changeCipherSpec(); err != nil {
   730				return c.in.setErrorLocked(c.sendAlert(err.(alert)))
   731			}
   732	
   733		case recordTypeApplicationData:
   734			if !handshakeComplete || expectChangeCipherSpec {
   735				return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   736			}
   737			// Some OpenSSL servers send empty records in order to randomize the
   738			// CBC IV. Ignore a limited number of empty records.
   739			if len(data) == 0 {
   740				return c.retryReadRecord(expectChangeCipherSpec)
   741			}
   742			// Note that data is owned by c.rawInput, following the Next call above,
   743			// to avoid copying the plaintext. This is safe because c.rawInput is
   744			// not read from or written to until c.input is drained.
   745			c.input.Reset(data)
   746	
   747		case recordTypeHandshake:
   748			if len(data) == 0 || expectChangeCipherSpec {
   749				return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   750			}
   751			c.hand.Write(data)
   752		}
   753	
   754		return nil
   755	}
   756	
   757	// retryReadRecord recurses into readRecordOrCCS to drop a non-advancing record, like
   758	// a warning alert, empty application_data, or a change_cipher_spec in TLS 1.3.
   759	func (c *Conn) retryReadRecord(expectChangeCipherSpec bool) error {
   760		c.retryCount++
   761		if c.retryCount > maxUselessRecords {
   762			c.sendAlert(alertUnexpectedMessage)
   763			return c.in.setErrorLocked(errors.New("tls: too many ignored records"))
   764		}
   765		return c.readRecordOrCCS(expectChangeCipherSpec)
   766	}
   767	
   768	// atLeastReader reads from R, stopping with EOF once at least N bytes have been
   769	// read. It is different from an io.LimitedReader in that it doesn't cut short
   770	// the last Read call, and in that it considers an early EOF an error.
   771	type atLeastReader struct {
   772		R io.Reader
   773		N int64
   774	}
   775	
   776	func (r *atLeastReader) Read(p []byte) (int, error) {
   777		if r.N <= 0 {
   778			return 0, io.EOF
   779		}
   780		n, err := r.R.Read(p)
   781		r.N -= int64(n) // won't underflow unless len(p) >= n > 9223372036854775809
   782		if r.N > 0 && err == io.EOF {
   783			return n, io.ErrUnexpectedEOF
   784		}
   785		if r.N <= 0 && err == nil {
   786			return n, io.EOF
   787		}
   788		return n, err
   789	}
   790	
   791	// readFromUntil reads from r into c.rawInput until c.rawInput contains
   792	// at least n bytes or else returns an error.
   793	func (c *Conn) readFromUntil(r io.Reader, n int) error {
   794		if c.rawInput.Len() >= n {
   795			return nil
   796		}
   797		needs := n - c.rawInput.Len()
   798		// There might be extra input waiting on the wire. Make a best effort
   799		// attempt to fetch it so that it can be used in (*Conn).Read to
   800		// "predict" closeNotify alerts.
   801		c.rawInput.Grow(needs + bytes.MinRead)
   802		_, err := c.rawInput.ReadFrom(&atLeastReader{r, int64(needs)})
   803		return err
   804	}
   805	
   806	// sendAlert sends a TLS alert message.
   807	func (c *Conn) sendAlertLocked(err alert) error {
   808		switch err {
   809		case alertNoRenegotiation, alertCloseNotify:
   810			c.tmp[0] = alertLevelWarning
   811		default:
   812			c.tmp[0] = alertLevelError
   813		}
   814		c.tmp[1] = byte(err)
   815	
   816		_, writeErr := c.writeRecordLocked(recordTypeAlert, c.tmp[0:2])
   817		if err == alertCloseNotify {
   818			// closeNotify is a special case in that it isn't an error.
   819			return writeErr
   820		}
   821	
   822		return c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err})
   823	}
   824	
   825	// sendAlert sends a TLS alert message.
   826	func (c *Conn) sendAlert(err alert) error {
   827		c.out.Lock()
   828		defer c.out.Unlock()
   829		return c.sendAlertLocked(err)
   830	}
   831	
   832	const (
   833		// tcpMSSEstimate is a conservative estimate of the TCP maximum segment
   834		// size (MSS). A constant is used, rather than querying the kernel for
   835		// the actual MSS, to avoid complexity. The value here is the IPv6
   836		// minimum MTU (1280 bytes) minus the overhead of an IPv6 header (40
   837		// bytes) and a TCP header with timestamps (32 bytes).
   838		tcpMSSEstimate = 1208
   839	
   840		// recordSizeBoostThreshold is the number of bytes of application data
   841		// sent after which the TLS record size will be increased to the
   842		// maximum.
   843		recordSizeBoostThreshold = 128 * 1024
   844	)
   845	
   846	// maxPayloadSizeForWrite returns the maximum TLS payload size to use for the
   847	// next application data record. There is the following trade-off:
   848	//
   849	//   - For latency-sensitive applications, such as web browsing, each TLS
   850	//     record should fit in one TCP segment.
   851	//   - For throughput-sensitive applications, such as large file transfers,
   852	//     larger TLS records better amortize framing and encryption overheads.
   853	//
   854	// A simple heuristic that works well in practice is to use small records for
   855	// the first 1MB of data, then use larger records for subsequent data, and
   856	// reset back to smaller records after the connection becomes idle. See "High
   857	// Performance Web Networking", Chapter 4, or:
   858	// https://www.igvita.com/2013/10/24/optimizing-tls-record-size-and-buffering-latency/
   859	//
   860	// In the interests of simplicity and determinism, this code does not attempt
   861	// to reset the record size once the connection is idle, however.
   862	func (c *Conn) maxPayloadSizeForWrite(typ recordType) int {
   863		if c.config.DynamicRecordSizingDisabled || typ != recordTypeApplicationData {
   864			return maxPlaintext
   865		}
   866	
   867		if c.bytesSent >= recordSizeBoostThreshold {
   868			return maxPlaintext
   869		}
   870	
   871		// Subtract TLS overheads to get the maximum payload size.
   872		payloadBytes := tcpMSSEstimate - recordHeaderLen - c.out.explicitNonceLen()
   873		if c.out.cipher != nil {
   874			switch ciph := c.out.cipher.(type) {
   875			case cipher.Stream:
   876				payloadBytes -= c.out.mac.Size()
   877			case cipher.AEAD:
   878				payloadBytes -= ciph.Overhead()
   879			case cbcMode:
   880				blockSize := ciph.BlockSize()
   881				// The payload must fit in a multiple of blockSize, with
   882				// room for at least one padding byte.
   883				payloadBytes = (payloadBytes & ^(blockSize - 1)) - 1
   884				// The MAC is appended before padding so affects the
   885				// payload size directly.
   886				payloadBytes -= c.out.mac.Size()
   887			default:
   888				panic("unknown cipher type")
   889			}
   890		}
   891		if c.vers == VersionTLS13 {
   892			payloadBytes-- // encrypted ContentType
   893		}
   894	
   895		// Allow packet growth in arithmetic progression up to max.
   896		pkt := c.packetsSent
   897		c.packetsSent++
   898		if pkt > 1000 {
   899			return maxPlaintext // avoid overflow in multiply below
   900		}
   901	
   902		n := payloadBytes * int(pkt+1)
   903		if n > maxPlaintext {
   904			n = maxPlaintext
   905		}
   906		return n
   907	}
   908	
   909	func (c *Conn) write(data []byte) (int, error) {
   910		if c.buffering {
   911			c.sendBuf = append(c.sendBuf, data...)
   912			return len(data), nil
   913		}
   914	
   915		n, err := c.conn.Write(data)
   916		c.bytesSent += int64(n)
   917		return n, err
   918	}
   919	
   920	func (c *Conn) flush() (int, error) {
   921		if len(c.sendBuf) == 0 {
   922			return 0, nil
   923		}
   924	
   925		n, err := c.conn.Write(c.sendBuf)
   926		c.bytesSent += int64(n)
   927		c.sendBuf = nil
   928		c.buffering = false
   929		return n, err
   930	}
   931	
   932	// writeRecordLocked writes a TLS record with the given type and payload to the
   933	// connection and updates the record layer state.
   934	func (c *Conn) writeRecordLocked(typ recordType, data []byte) (int, error) {
   935		var n int
   936		for len(data) > 0 {
   937			m := len(data)
   938			if maxPayload := c.maxPayloadSizeForWrite(typ); m > maxPayload {
   939				m = maxPayload
   940			}
   941	
   942			_, c.outBuf = sliceForAppend(c.outBuf[:0], recordHeaderLen)
   943			c.outBuf[0] = byte(typ)
   944			vers := c.vers
   945			if vers == 0 {
   946				// Some TLS servers fail if the record version is
   947				// greater than TLS 1.0 for the initial ClientHello.
   948				vers = VersionTLS10
   949			} else if vers == VersionTLS13 {
   950				// TLS 1.3 froze the record layer version to 1.2.
   951				// See RFC 8446, Section 5.1.
   952				vers = VersionTLS12
   953			}
   954			c.outBuf[1] = byte(vers >> 8)
   955			c.outBuf[2] = byte(vers)
   956			c.outBuf[3] = byte(m >> 8)
   957			c.outBuf[4] = byte(m)
   958	
   959			var err error
   960			c.outBuf, err = c.out.encrypt(c.outBuf, data[:m], c.config.rand())
   961			if err != nil {
   962				return n, err
   963			}
   964			if _, err := c.write(c.outBuf); err != nil {
   965				return n, err
   966			}
   967			n += m
   968			data = data[m:]
   969		}
   970	
   971		if typ == recordTypeChangeCipherSpec && c.vers != VersionTLS13 {
   972			if err := c.out.changeCipherSpec(); err != nil {
   973				return n, c.sendAlertLocked(err.(alert))
   974			}
   975		}
   976	
   977		return n, nil
   978	}
   979	
   980	// writeRecord writes a TLS record with the given type and payload to the
   981	// connection and updates the record layer state.
   982	func (c *Conn) writeRecord(typ recordType, data []byte) (int, error) {
   983		c.out.Lock()
   984		defer c.out.Unlock()
   985	
   986		return c.writeRecordLocked(typ, data)
   987	}
   988	
   989	// readHandshake reads the next handshake message from
   990	// the record layer.
   991	func (c *Conn) readHandshake() (interface{}, error) {
   992		for c.hand.Len() < 4 {
   993			if err := c.readRecord(); err != nil {
   994				return nil, err
   995			}
   996		}
   997	
   998		data := c.hand.Bytes()
   999		n := int(data[1])<<16 | int(data[2])<<8 | int(data[3])
  1000		if n > maxHandshake {
  1001			c.sendAlertLocked(alertInternalError)
  1002			return nil, c.in.setErrorLocked(fmt.Errorf("tls: handshake message of length %d bytes exceeds maximum of %d bytes", n, maxHandshake))
  1003		}
  1004		for c.hand.Len() < 4+n {
  1005			if err := c.readRecord(); err != nil {
  1006				return nil, err
  1007			}
  1008		}
  1009		data = c.hand.Next(4 + n)
  1010		var m handshakeMessage
  1011		switch data[0] {
  1012		case typeHelloRequest:
  1013			m = new(helloRequestMsg)
  1014		case typeClientHello:
  1015			m = new(clientHelloMsg)
  1016		case typeServerHello:
  1017			m = new(serverHelloMsg)
  1018		case typeNewSessionTicket:
  1019			if c.vers == VersionTLS13 {
  1020				m = new(newSessionTicketMsgTLS13)
  1021			} else {
  1022				m = new(newSessionTicketMsg)
  1023			}
  1024		case typeCertificate:
  1025			if c.vers == VersionTLS13 {
  1026				m = new(certificateMsgTLS13)
  1027			} else {
  1028				m = new(certificateMsg)
  1029			}
  1030		case typeCertificateRequest:
  1031			if c.vers == VersionTLS13 {
  1032				m = new(certificateRequestMsgTLS13)
  1033			} else {
  1034				m = &certificateRequestMsg{
  1035					hasSignatureAlgorithm: c.vers >= VersionTLS12,
  1036				}
  1037			}
  1038		case typeCertificateStatus:
  1039			m = new(certificateStatusMsg)
  1040		case typeServerKeyExchange:
  1041			m = new(serverKeyExchangeMsg)
  1042		case typeServerHelloDone:
  1043			m = new(serverHelloDoneMsg)
  1044		case typeClientKeyExchange:
  1045			m = new(clientKeyExchangeMsg)
  1046		case typeCertificateVerify:
  1047			m = &certificateVerifyMsg{
  1048				hasSignatureAlgorithm: c.vers >= VersionTLS12,
  1049			}
  1050		case typeNextProtocol:
  1051			m = new(nextProtoMsg)
  1052		case typeFinished:
  1053			m = new(finishedMsg)
  1054		case typeEncryptedExtensions:
  1055			m = new(encryptedExtensionsMsg)
  1056		case typeEndOfEarlyData:
  1057			m = new(endOfEarlyDataMsg)
  1058		case typeKeyUpdate:
  1059			m = new(keyUpdateMsg)
  1060		default:
  1061			return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
  1062		}
  1063	
  1064		// The handshake message unmarshalers
  1065		// expect to be able to keep references to data,
  1066		// so pass in a fresh copy that won't be overwritten.
  1067		data = append([]byte(nil), data...)
  1068	
  1069		if !m.unmarshal(data) {
  1070			return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
  1071		}
  1072		return m, nil
  1073	}
  1074	
  1075	var (
  1076		errClosed   = errors.New("tls: use of closed connection")
  1077		errShutdown = errors.New("tls: protocol is shutdown")
  1078	)
  1079	
  1080	// Write writes data to the connection.
  1081	func (c *Conn) Write(b []byte) (int, error) {
  1082		// interlock with Close below
  1083		for {
  1084			x := atomic.LoadInt32(&c.activeCall)
  1085			if x&1 != 0 {
  1086				return 0, errClosed
  1087			}
  1088			if atomic.CompareAndSwapInt32(&c.activeCall, x, x+2) {
  1089				defer atomic.AddInt32(&c.activeCall, -2)
  1090				break
  1091			}
  1092		}
  1093	
  1094		if err := c.Handshake(); err != nil {
  1095			return 0, err
  1096		}
  1097	
  1098		c.out.Lock()
  1099		defer c.out.Unlock()
  1100	
  1101		if err := c.out.err; err != nil {
  1102			return 0, err
  1103		}
  1104	
  1105		if !c.handshakeComplete() {
  1106			return 0, alertInternalError
  1107		}
  1108	
  1109		if c.closeNotifySent {
  1110			return 0, errShutdown
  1111		}
  1112	
  1113		// SSL 3.0 and TLS 1.0 are susceptible to a chosen-plaintext
  1114		// attack when using block mode ciphers due to predictable IVs.
  1115		// This can be prevented by splitting each Application Data
  1116		// record into two records, effectively randomizing the IV.
  1117		//
  1118		// https://www.openssl.org/~bodo/tls-cbc.txt
  1119		// https://bugzilla.mozilla.org/show_bug.cgi?id=665814
  1120		// https://www.imperialviolet.org/2012/01/15/beastfollowup.html
  1121	
  1122		var m int
  1123		if len(b) > 1 && c.vers <= VersionTLS10 {
  1124			if _, ok := c.out.cipher.(cipher.BlockMode); ok {
  1125				n, err := c.writeRecordLocked(recordTypeApplicationData, b[:1])
  1126				if err != nil {
  1127					return n, c.out.setErrorLocked(err)
  1128				}
  1129				m, b = 1, b[1:]
  1130			}
  1131		}
  1132	
  1133		n, err := c.writeRecordLocked(recordTypeApplicationData, b)
  1134		return n + m, c.out.setErrorLocked(err)
  1135	}
  1136	
  1137	// handleRenegotiation processes a HelloRequest handshake message.
  1138	func (c *Conn) handleRenegotiation() error {
  1139		if c.vers == VersionTLS13 {
  1140			return errors.New("tls: internal error: unexpected renegotiation")
  1141		}
  1142	
  1143		msg, err := c.readHandshake()
  1144		if err != nil {
  1145			return err
  1146		}
  1147	
  1148		helloReq, ok := msg.(*helloRequestMsg)
  1149		if !ok {
  1150			c.sendAlert(alertUnexpectedMessage)
  1151			return unexpectedMessageError(helloReq, msg)
  1152		}
  1153	
  1154		if !c.isClient {
  1155			return c.sendAlert(alertNoRenegotiation)
  1156		}
  1157	
  1158		switch c.config.Renegotiation {
  1159		case RenegotiateNever:
  1160			return c.sendAlert(alertNoRenegotiation)
  1161		case RenegotiateOnceAsClient:
  1162			if c.handshakes > 1 {
  1163				return c.sendAlert(alertNoRenegotiation)
  1164			}
  1165		case RenegotiateFreelyAsClient:
  1166			// Ok.
  1167		default:
  1168			c.sendAlert(alertInternalError)
  1169			return errors.New("tls: unknown Renegotiation value")
  1170		}
  1171	
  1172		c.handshakeMutex.Lock()
  1173		defer c.handshakeMutex.Unlock()
  1174	
  1175		atomic.StoreUint32(&c.handshakeStatus, 0)
  1176		if c.handshakeErr = c.clientHandshake(); c.handshakeErr == nil {
  1177			c.handshakes++
  1178		}
  1179		return c.handshakeErr
  1180	}
  1181	
  1182	// handlePostHandshakeMessage processes a handshake message arrived after the
  1183	// handshake is complete. Up to TLS 1.2, it indicates the start of a renegotiation.
  1184	func (c *Conn) handlePostHandshakeMessage() error {
  1185		if c.vers != VersionTLS13 {
  1186			return c.handleRenegotiation()
  1187		}
  1188	
  1189		msg, err := c.readHandshake()
  1190		if err != nil {
  1191			return err
  1192		}
  1193	
  1194		c.retryCount++
  1195		if c.retryCount > maxUselessRecords {
  1196			c.sendAlert(alertUnexpectedMessage)
  1197			return c.in.setErrorLocked(errors.New("tls: too many non-advancing records"))
  1198		}
  1199	
  1200		switch msg := msg.(type) {
  1201		case *newSessionTicketMsgTLS13:
  1202			return c.handleNewSessionTicket(msg)
  1203		case *keyUpdateMsg:
  1204			return c.handleKeyUpdate(msg)
  1205		default:
  1206			c.sendAlert(alertUnexpectedMessage)
  1207			return fmt.Errorf("tls: received unexpected handshake message of type %T", msg)
  1208		}
  1209	}
  1210	
  1211	func (c *Conn) handleKeyUpdate(keyUpdate *keyUpdateMsg) error {
  1212		cipherSuite := cipherSuiteTLS13ByID(c.cipherSuite)
  1213		if cipherSuite == nil {
  1214			return c.in.setErrorLocked(c.sendAlert(alertInternalError))
  1215		}
  1216	
  1217		newSecret := cipherSuite.nextTrafficSecret(c.in.trafficSecret)
  1218		c.in.setTrafficSecret(cipherSuite, newSecret)
  1219	
  1220		if keyUpdate.updateRequested {
  1221			c.out.Lock()
  1222			defer c.out.Unlock()
  1223	
  1224			msg := &keyUpdateMsg{}
  1225			_, err := c.writeRecordLocked(recordTypeHandshake, msg.marshal())
  1226			if err != nil {
  1227				// Surface the error at the next write.
  1228				c.out.setErrorLocked(err)
  1229				return nil
  1230			}
  1231	
  1232			newSecret := cipherSuite.nextTrafficSecret(c.out.trafficSecret)
  1233			c.out.setTrafficSecret(cipherSuite, newSecret)
  1234		}
  1235	
  1236		return nil
  1237	}
  1238	
  1239	// Read can be made to time out and return a net.Error with Timeout() == true
  1240	// after a fixed time limit; see SetDeadline and SetReadDeadline.
  1241	func (c *Conn) Read(b []byte) (int, error) {
  1242		if err := c.Handshake(); err != nil {
  1243			return 0, err
  1244		}
  1245		if len(b) == 0 {
  1246			// Put this after Handshake, in case people were calling
  1247			// Read(nil) for the side effect of the Handshake.
  1248			return 0, nil
  1249		}
  1250	
  1251		c.in.Lock()
  1252		defer c.in.Unlock()
  1253	
  1254		for c.input.Len() == 0 {
  1255			if err := c.readRecord(); err != nil {
  1256				return 0, err
  1257			}
  1258			for c.hand.Len() > 0 {
  1259				if err := c.handlePostHandshakeMessage(); err != nil {
  1260					return 0, err
  1261				}
  1262			}
  1263		}
  1264	
  1265		n, _ := c.input.Read(b)
  1266	
  1267		// If a close-notify alert is waiting, read it so that we can return (n,
  1268		// EOF) instead of (n, nil), to signal to the HTTP response reading
  1269		// goroutine that the connection is now closed. This eliminates a race
  1270		// where the HTTP response reading goroutine would otherwise not observe
  1271		// the EOF until its next read, by which time a client goroutine might
  1272		// have already tried to reuse the HTTP connection for a new request.
  1273		// See https://golang.org/cl/76400046 and https://golang.org/issue/3514
  1274		if n != 0 && c.input.Len() == 0 && c.rawInput.Len() > 0 &&
  1275			recordType(c.rawInput.Bytes()[0]) == recordTypeAlert {
  1276			if err := c.readRecord(); err != nil {
  1277				return n, err // will be io.EOF on closeNotify
  1278			}
  1279		}
  1280	
  1281		return n, nil
  1282	}
  1283	
  1284	// Close closes the connection.
  1285	func (c *Conn) Close() error {
  1286		// Interlock with Conn.Write above.
  1287		var x int32
  1288		for {
  1289			x = atomic.LoadInt32(&c.activeCall)
  1290			if x&1 != 0 {
  1291				return errClosed
  1292			}
  1293			if atomic.CompareAndSwapInt32(&c.activeCall, x, x|1) {
  1294				break
  1295			}
  1296		}
  1297		if x != 0 {
  1298			// io.Writer and io.Closer should not be used concurrently.
  1299			// If Close is called while a Write is currently in-flight,
  1300			// interpret that as a sign that this Close is really just
  1301			// being used to break the Write and/or clean up resources and
  1302			// avoid sending the alertCloseNotify, which may block
  1303			// waiting on handshakeMutex or the c.out mutex.
  1304			return c.conn.Close()
  1305		}
  1306	
  1307		var alertErr error
  1308	
  1309		if c.handshakeComplete() {
  1310			alertErr = c.closeNotify()
  1311		}
  1312	
  1313		if err := c.conn.Close(); err != nil {
  1314			return err
  1315		}
  1316		return alertErr
  1317	}
  1318	
  1319	var errEarlyCloseWrite = errors.New("tls: CloseWrite called before handshake complete")
  1320	
  1321	// CloseWrite shuts down the writing side of the connection. It should only be
  1322	// called once the handshake has completed and does not call CloseWrite on the
  1323	// underlying connection. Most callers should just use Close.
  1324	func (c *Conn) CloseWrite() error {
  1325		if !c.handshakeComplete() {
  1326			return errEarlyCloseWrite
  1327		}
  1328	
  1329		return c.closeNotify()
  1330	}
  1331	
  1332	func (c *Conn) closeNotify() error {
  1333		c.out.Lock()
  1334		defer c.out.Unlock()
  1335	
  1336		if !c.closeNotifySent {
  1337			c.closeNotifyErr = c.sendAlertLocked(alertCloseNotify)
  1338			c.closeNotifySent = true
  1339		}
  1340		return c.closeNotifyErr
  1341	}
  1342	
  1343	// Handshake runs the client or server handshake
  1344	// protocol if it has not yet been run.
  1345	// Most uses of this package need not call Handshake
  1346	// explicitly: the first Read or Write will call it automatically.
  1347	func (c *Conn) Handshake() error {
  1348		c.handshakeMutex.Lock()
  1349		defer c.handshakeMutex.Unlock()
  1350	
  1351		if err := c.handshakeErr; err != nil {
  1352			return err
  1353		}
  1354		if c.handshakeComplete() {
  1355			return nil
  1356		}
  1357	
  1358		c.in.Lock()
  1359		defer c.in.Unlock()
  1360	
  1361		if c.isClient {
  1362			c.handshakeErr = c.clientHandshake()
  1363		} else {
  1364			c.handshakeErr = c.serverHandshake()
  1365		}
  1366		if c.handshakeErr == nil {
  1367			c.handshakes++
  1368		} else {
  1369			// If an error occurred during the hadshake try to flush the
  1370			// alert that might be left in the buffer.
  1371			c.flush()
  1372		}
  1373	
  1374		if c.handshakeErr == nil && !c.handshakeComplete() {
  1375			c.handshakeErr = errors.New("tls: internal error: handshake should have had a result")
  1376		}
  1377	
  1378		return c.handshakeErr
  1379	}
  1380	
  1381	// ConnectionState returns basic TLS details about the connection.
  1382	func (c *Conn) ConnectionState() ConnectionState {
  1383		c.handshakeMutex.Lock()
  1384		defer c.handshakeMutex.Unlock()
  1385	
  1386		var state ConnectionState
  1387		state.HandshakeComplete = c.handshakeComplete()
  1388		state.ServerName = c.serverName
  1389	
  1390		if state.HandshakeComplete {
  1391			state.Version = c.vers
  1392			state.NegotiatedProtocol = c.clientProtocol
  1393			state.DidResume = c.didResume
  1394			state.NegotiatedProtocolIsMutual = !c.clientProtocolFallback
  1395			state.CipherSuite = c.cipherSuite
  1396			state.PeerCertificates = c.peerCertificates
  1397			state.VerifiedChains = c.verifiedChains
  1398			state.SignedCertificateTimestamps = c.scts
  1399			state.OCSPResponse = c.ocspResponse
  1400			if !c.didResume && c.vers != VersionTLS13 {
  1401				if c.clientFinishedIsFirst {
  1402					state.TLSUnique = c.clientFinished[:]
  1403				} else {
  1404					state.TLSUnique = c.serverFinished[:]
  1405				}
  1406			}
  1407			if c.config.Renegotiation != RenegotiateNever {
  1408				state.ekm = noExportedKeyingMaterial
  1409			} else {
  1410				state.ekm = c.ekm
  1411			}
  1412		}
  1413	
  1414		return state
  1415	}
  1416	
  1417	// OCSPResponse returns the stapled OCSP response from the TLS server, if
  1418	// any. (Only valid for client connections.)
  1419	func (c *Conn) OCSPResponse() []byte {
  1420		c.handshakeMutex.Lock()
  1421		defer c.handshakeMutex.Unlock()
  1422	
  1423		return c.ocspResponse
  1424	}
  1425	
  1426	// VerifyHostname checks that the peer certificate chain is valid for
  1427	// connecting to host. If so, it returns nil; if not, it returns an error
  1428	// describing the problem.
  1429	func (c *Conn) VerifyHostname(host string) error {
  1430		c.handshakeMutex.Lock()
  1431		defer c.handshakeMutex.Unlock()
  1432		if !c.isClient {
  1433			return errors.New("tls: VerifyHostname called on TLS server connection")
  1434		}
  1435		if !c.handshakeComplete() {
  1436			return errors.New("tls: handshake has not yet been performed")
  1437		}
  1438		if len(c.verifiedChains) == 0 {
  1439			return errors.New("tls: handshake did not verify certificate chain")
  1440		}
  1441		return c.peerCertificates[0].VerifyHostname(host)
  1442	}
  1443	
  1444	func (c *Conn) handshakeComplete() bool {
  1445		return atomic.LoadUint32(&c.handshakeStatus) == 1
  1446	}
  1447	

View as plain text