...

Source file src/pkg/crypto/rsa/rsa.go

     1	// Copyright 2009 The Go Authors. All rights reserved.
     2	// Use of this source code is governed by a BSD-style
     3	// license that can be found in the LICENSE file.
     4	
     5	// Package rsa implements RSA encryption as specified in PKCS#1.
     6	//
     7	// RSA is a single, fundamental operation that is used in this package to
     8	// implement either public-key encryption or public-key signatures.
     9	//
    10	// The original specification for encryption and signatures with RSA is PKCS#1
    11	// and the terms "RSA encryption" and "RSA signatures" by default refer to
    12	// PKCS#1 version 1.5. However, that specification has flaws and new designs
    13	// should use version two, usually called by just OAEP and PSS, where
    14	// possible.
    15	//
    16	// Two sets of interfaces are included in this package. When a more abstract
    17	// interface isn't necessary, there are functions for encrypting/decrypting
    18	// with v1.5/OAEP and signing/verifying with v1.5/PSS. If one needs to abstract
    19	// over the public-key primitive, the PrivateKey struct implements the
    20	// Decrypter and Signer interfaces from the crypto package.
    21	//
    22	// The RSA operations in this package are not implemented using constant-time algorithms.
    23	package rsa
    24	
    25	import (
    26		"crypto"
    27		"crypto/rand"
    28		"crypto/subtle"
    29		"errors"
    30		"hash"
    31		"io"
    32		"math"
    33		"math/big"
    34	
    35		"crypto/internal/randutil"
    36	)
    37	
    38	var bigZero = big.NewInt(0)
    39	var bigOne = big.NewInt(1)
    40	
    41	// A PublicKey represents the public part of an RSA key.
    42	type PublicKey struct {
    43		N *big.Int // modulus
    44		E int      // public exponent
    45	}
    46	
    47	// Size returns the modulus size in bytes. Raw signatures and ciphertexts
    48	// for or by this public key will have the same size.
    49	func (pub *PublicKey) Size() int {
    50		return (pub.N.BitLen() + 7) / 8
    51	}
    52	
    53	// OAEPOptions is an interface for passing options to OAEP decryption using the
    54	// crypto.Decrypter interface.
    55	type OAEPOptions struct {
    56		// Hash is the hash function that will be used when generating the mask.
    57		Hash crypto.Hash
    58		// Label is an arbitrary byte string that must be equal to the value
    59		// used when encrypting.
    60		Label []byte
    61	}
    62	
    63	var (
    64		errPublicModulus       = errors.New("crypto/rsa: missing public modulus")
    65		errPublicExponentSmall = errors.New("crypto/rsa: public exponent too small")
    66		errPublicExponentLarge = errors.New("crypto/rsa: public exponent too large")
    67	)
    68	
    69	// checkPub sanity checks the public key before we use it.
    70	// We require pub.E to fit into a 32-bit integer so that we
    71	// do not have different behavior depending on whether
    72	// int is 32 or 64 bits. See also
    73	// https://www.imperialviolet.org/2012/03/16/rsae.html.
    74	func checkPub(pub *PublicKey) error {
    75		if pub.N == nil {
    76			return errPublicModulus
    77		}
    78		if pub.E < 2 {
    79			return errPublicExponentSmall
    80		}
    81		if pub.E > 1<<31-1 {
    82			return errPublicExponentLarge
    83		}
    84		return nil
    85	}
    86	
    87	// A PrivateKey represents an RSA key
    88	type PrivateKey struct {
    89		PublicKey            // public part.
    90		D         *big.Int   // private exponent
    91		Primes    []*big.Int // prime factors of N, has >= 2 elements.
    92	
    93		// Precomputed contains precomputed values that speed up private
    94		// operations, if available.
    95		Precomputed PrecomputedValues
    96	}
    97	
    98	// Public returns the public key corresponding to priv.
    99	func (priv *PrivateKey) Public() crypto.PublicKey {
   100		return &priv.PublicKey
   101	}
   102	
   103	// Sign signs digest with priv, reading randomness from rand. If opts is a
   104	// *PSSOptions then the PSS algorithm will be used, otherwise PKCS#1 v1.5 will
   105	// be used.
   106	//
   107	// This method implements crypto.Signer, which is an interface to support keys
   108	// where the private part is kept in, for example, a hardware module. Common
   109	// uses should use the Sign* functions in this package directly.
   110	func (priv *PrivateKey) Sign(rand io.Reader, digest []byte, opts crypto.SignerOpts) ([]byte, error) {
   111		if pssOpts, ok := opts.(*PSSOptions); ok {
   112			return SignPSS(rand, priv, pssOpts.Hash, digest, pssOpts)
   113		}
   114	
   115		return SignPKCS1v15(rand, priv, opts.HashFunc(), digest)
   116	}
   117	
   118	// Decrypt decrypts ciphertext with priv. If opts is nil or of type
   119	// *PKCS1v15DecryptOptions then PKCS#1 v1.5 decryption is performed. Otherwise
   120	// opts must have type *OAEPOptions and OAEP decryption is done.
   121	func (priv *PrivateKey) Decrypt(rand io.Reader, ciphertext []byte, opts crypto.DecrypterOpts) (plaintext []byte, err error) {
   122		if opts == nil {
   123			return DecryptPKCS1v15(rand, priv, ciphertext)
   124		}
   125	
   126		switch opts := opts.(type) {
   127		case *OAEPOptions:
   128			return DecryptOAEP(opts.Hash.New(), rand, priv, ciphertext, opts.Label)
   129	
   130		case *PKCS1v15DecryptOptions:
   131			if l := opts.SessionKeyLen; l > 0 {
   132				plaintext = make([]byte, l)
   133				if _, err := io.ReadFull(rand, plaintext); err != nil {
   134					return nil, err
   135				}
   136				if err := DecryptPKCS1v15SessionKey(rand, priv, ciphertext, plaintext); err != nil {
   137					return nil, err
   138				}
   139				return plaintext, nil
   140			} else {
   141				return DecryptPKCS1v15(rand, priv, ciphertext)
   142			}
   143	
   144		default:
   145			return nil, errors.New("crypto/rsa: invalid options for Decrypt")
   146		}
   147	}
   148	
   149	type PrecomputedValues struct {
   150		Dp, Dq *big.Int // D mod (P-1) (or mod Q-1)
   151		Qinv   *big.Int // Q^-1 mod P
   152	
   153		// CRTValues is used for the 3rd and subsequent primes. Due to a
   154		// historical accident, the CRT for the first two primes is handled
   155		// differently in PKCS#1 and interoperability is sufficiently
   156		// important that we mirror this.
   157		CRTValues []CRTValue
   158	}
   159	
   160	// CRTValue contains the precomputed Chinese remainder theorem values.
   161	type CRTValue struct {
   162		Exp   *big.Int // D mod (prime-1).
   163		Coeff *big.Int // R·Coeff ≡ 1 mod Prime.
   164		R     *big.Int // product of primes prior to this (inc p and q).
   165	}
   166	
   167	// Validate performs basic sanity checks on the key.
   168	// It returns nil if the key is valid, or else an error describing a problem.
   169	func (priv *PrivateKey) Validate() error {
   170		if err := checkPub(&priv.PublicKey); err != nil {
   171			return err
   172		}
   173	
   174		// Check that Πprimes == n.
   175		modulus := new(big.Int).Set(bigOne)
   176		for _, prime := range priv.Primes {
   177			// Any primes ≤ 1 will cause divide-by-zero panics later.
   178			if prime.Cmp(bigOne) <= 0 {
   179				return errors.New("crypto/rsa: invalid prime value")
   180			}
   181			modulus.Mul(modulus, prime)
   182		}
   183		if modulus.Cmp(priv.N) != 0 {
   184			return errors.New("crypto/rsa: invalid modulus")
   185		}
   186	
   187		// Check that de ≡ 1 mod p-1, for each prime.
   188		// This implies that e is coprime to each p-1 as e has a multiplicative
   189		// inverse. Therefore e is coprime to lcm(p-1,q-1,r-1,...) =
   190		// exponent(ℤ/nℤ). It also implies that a^de ≡ a mod p as a^(p-1) ≡ 1
   191		// mod p. Thus a^de ≡ a mod n for all a coprime to n, as required.
   192		congruence := new(big.Int)
   193		de := new(big.Int).SetInt64(int64(priv.E))
   194		de.Mul(de, priv.D)
   195		for _, prime := range priv.Primes {
   196			pminus1 := new(big.Int).Sub(prime, bigOne)
   197			congruence.Mod(de, pminus1)
   198			if congruence.Cmp(bigOne) != 0 {
   199				return errors.New("crypto/rsa: invalid exponents")
   200			}
   201		}
   202		return nil
   203	}
   204	
   205	// GenerateKey generates an RSA keypair of the given bit size using the
   206	// random source random (for example, crypto/rand.Reader).
   207	func GenerateKey(random io.Reader, bits int) (*PrivateKey, error) {
   208		return GenerateMultiPrimeKey(random, 2, bits)
   209	}
   210	
   211	// GenerateMultiPrimeKey generates a multi-prime RSA keypair of the given bit
   212	// size and the given random source, as suggested in [1]. Although the public
   213	// keys are compatible (actually, indistinguishable) from the 2-prime case,
   214	// the private keys are not. Thus it may not be possible to export multi-prime
   215	// private keys in certain formats or to subsequently import them into other
   216	// code.
   217	//
   218	// Table 1 in [2] suggests maximum numbers of primes for a given size.
   219	//
   220	// [1] US patent 4405829 (1972, expired)
   221	// [2] http://www.cacr.math.uwaterloo.ca/techreports/2006/cacr2006-16.pdf
   222	func GenerateMultiPrimeKey(random io.Reader, nprimes int, bits int) (*PrivateKey, error) {
   223		randutil.MaybeReadByte(random)
   224	
   225		priv := new(PrivateKey)
   226		priv.E = 65537
   227	
   228		if nprimes < 2 {
   229			return nil, errors.New("crypto/rsa: GenerateMultiPrimeKey: nprimes must be >= 2")
   230		}
   231	
   232		if bits < 64 {
   233			primeLimit := float64(uint64(1) << uint(bits/nprimes))
   234			// pi approximates the number of primes less than primeLimit
   235			pi := primeLimit / (math.Log(primeLimit) - 1)
   236			// Generated primes start with 11 (in binary) so we can only
   237			// use a quarter of them.
   238			pi /= 4
   239			// Use a factor of two to ensure that key generation terminates
   240			// in a reasonable amount of time.
   241			pi /= 2
   242			if pi <= float64(nprimes) {
   243				return nil, errors.New("crypto/rsa: too few primes of given length to generate an RSA key")
   244			}
   245		}
   246	
   247		primes := make([]*big.Int, nprimes)
   248	
   249	NextSetOfPrimes:
   250		for {
   251			todo := bits
   252			// crypto/rand should set the top two bits in each prime.
   253			// Thus each prime has the form
   254			//   p_i = 2^bitlen(p_i) × 0.11... (in base 2).
   255			// And the product is:
   256			//   P = 2^todo × α
   257			// where α is the product of nprimes numbers of the form 0.11...
   258			//
   259			// If α < 1/2 (which can happen for nprimes > 2), we need to
   260			// shift todo to compensate for lost bits: the mean value of 0.11...
   261			// is 7/8, so todo + shift - nprimes * log2(7/8) ~= bits - 1/2
   262			// will give good results.
   263			if nprimes >= 7 {
   264				todo += (nprimes - 2) / 5
   265			}
   266			for i := 0; i < nprimes; i++ {
   267				var err error
   268				primes[i], err = rand.Prime(random, todo/(nprimes-i))
   269				if err != nil {
   270					return nil, err
   271				}
   272				todo -= primes[i].BitLen()
   273			}
   274	
   275			// Make sure that primes is pairwise unequal.
   276			for i, prime := range primes {
   277				for j := 0; j < i; j++ {
   278					if prime.Cmp(primes[j]) == 0 {
   279						continue NextSetOfPrimes
   280					}
   281				}
   282			}
   283	
   284			n := new(big.Int).Set(bigOne)
   285			totient := new(big.Int).Set(bigOne)
   286			pminus1 := new(big.Int)
   287			for _, prime := range primes {
   288				n.Mul(n, prime)
   289				pminus1.Sub(prime, bigOne)
   290				totient.Mul(totient, pminus1)
   291			}
   292			if n.BitLen() != bits {
   293				// This should never happen for nprimes == 2 because
   294				// crypto/rand should set the top two bits in each prime.
   295				// For nprimes > 2 we hope it does not happen often.
   296				continue NextSetOfPrimes
   297			}
   298	
   299			priv.D = new(big.Int)
   300			e := big.NewInt(int64(priv.E))
   301			ok := priv.D.ModInverse(e, totient)
   302	
   303			if ok != nil {
   304				priv.Primes = primes
   305				priv.N = n
   306				break
   307			}
   308		}
   309	
   310		priv.Precompute()
   311		return priv, nil
   312	}
   313	
   314	// incCounter increments a four byte, big-endian counter.
   315	func incCounter(c *[4]byte) {
   316		if c[3]++; c[3] != 0 {
   317			return
   318		}
   319		if c[2]++; c[2] != 0 {
   320			return
   321		}
   322		if c[1]++; c[1] != 0 {
   323			return
   324		}
   325		c[0]++
   326	}
   327	
   328	// mgf1XOR XORs the bytes in out with a mask generated using the MGF1 function
   329	// specified in PKCS#1 v2.1.
   330	func mgf1XOR(out []byte, hash hash.Hash, seed []byte) {
   331		var counter [4]byte
   332		var digest []byte
   333	
   334		done := 0
   335		for done < len(out) {
   336			hash.Write(seed)
   337			hash.Write(counter[0:4])
   338			digest = hash.Sum(digest[:0])
   339			hash.Reset()
   340	
   341			for i := 0; i < len(digest) && done < len(out); i++ {
   342				out[done] ^= digest[i]
   343				done++
   344			}
   345			incCounter(&counter)
   346		}
   347	}
   348	
   349	// ErrMessageTooLong is returned when attempting to encrypt a message which is
   350	// too large for the size of the public key.
   351	var ErrMessageTooLong = errors.New("crypto/rsa: message too long for RSA public key size")
   352	
   353	func encrypt(c *big.Int, pub *PublicKey, m *big.Int) *big.Int {
   354		e := big.NewInt(int64(pub.E))
   355		c.Exp(m, e, pub.N)
   356		return c
   357	}
   358	
   359	// EncryptOAEP encrypts the given message with RSA-OAEP.
   360	//
   361	// OAEP is parameterised by a hash function that is used as a random oracle.
   362	// Encryption and decryption of a given message must use the same hash function
   363	// and sha256.New() is a reasonable choice.
   364	//
   365	// The random parameter is used as a source of entropy to ensure that
   366	// encrypting the same message twice doesn't result in the same ciphertext.
   367	//
   368	// The label parameter may contain arbitrary data that will not be encrypted,
   369	// but which gives important context to the message. For example, if a given
   370	// public key is used to decrypt two types of messages then distinct label
   371	// values could be used to ensure that a ciphertext for one purpose cannot be
   372	// used for another by an attacker. If not required it can be empty.
   373	//
   374	// The message must be no longer than the length of the public modulus minus
   375	// twice the hash length, minus a further 2.
   376	func EncryptOAEP(hash hash.Hash, random io.Reader, pub *PublicKey, msg []byte, label []byte) ([]byte, error) {
   377		if err := checkPub(pub); err != nil {
   378			return nil, err
   379		}
   380		hash.Reset()
   381		k := pub.Size()
   382		if len(msg) > k-2*hash.Size()-2 {
   383			return nil, ErrMessageTooLong
   384		}
   385	
   386		hash.Write(label)
   387		lHash := hash.Sum(nil)
   388		hash.Reset()
   389	
   390		em := make([]byte, k)
   391		seed := em[1 : 1+hash.Size()]
   392		db := em[1+hash.Size():]
   393	
   394		copy(db[0:hash.Size()], lHash)
   395		db[len(db)-len(msg)-1] = 1
   396		copy(db[len(db)-len(msg):], msg)
   397	
   398		_, err := io.ReadFull(random, seed)
   399		if err != nil {
   400			return nil, err
   401		}
   402	
   403		mgf1XOR(db, hash, seed)
   404		mgf1XOR(seed, hash, db)
   405	
   406		m := new(big.Int)
   407		m.SetBytes(em)
   408		c := encrypt(new(big.Int), pub, m)
   409		out := c.Bytes()
   410	
   411		if len(out) < k {
   412			// If the output is too small, we need to left-pad with zeros.
   413			t := make([]byte, k)
   414			copy(t[k-len(out):], out)
   415			out = t
   416		}
   417	
   418		return out, nil
   419	}
   420	
   421	// ErrDecryption represents a failure to decrypt a message.
   422	// It is deliberately vague to avoid adaptive attacks.
   423	var ErrDecryption = errors.New("crypto/rsa: decryption error")
   424	
   425	// ErrVerification represents a failure to verify a signature.
   426	// It is deliberately vague to avoid adaptive attacks.
   427	var ErrVerification = errors.New("crypto/rsa: verification error")
   428	
   429	// Precompute performs some calculations that speed up private key operations
   430	// in the future.
   431	func (priv *PrivateKey) Precompute() {
   432		if priv.Precomputed.Dp != nil {
   433			return
   434		}
   435	
   436		priv.Precomputed.Dp = new(big.Int).Sub(priv.Primes[0], bigOne)
   437		priv.Precomputed.Dp.Mod(priv.D, priv.Precomputed.Dp)
   438	
   439		priv.Precomputed.Dq = new(big.Int).Sub(priv.Primes[1], bigOne)
   440		priv.Precomputed.Dq.Mod(priv.D, priv.Precomputed.Dq)
   441	
   442		priv.Precomputed.Qinv = new(big.Int).ModInverse(priv.Primes[1], priv.Primes[0])
   443	
   444		r := new(big.Int).Mul(priv.Primes[0], priv.Primes[1])
   445		priv.Precomputed.CRTValues = make([]CRTValue, len(priv.Primes)-2)
   446		for i := 2; i < len(priv.Primes); i++ {
   447			prime := priv.Primes[i]
   448			values := &priv.Precomputed.CRTValues[i-2]
   449	
   450			values.Exp = new(big.Int).Sub(prime, bigOne)
   451			values.Exp.Mod(priv.D, values.Exp)
   452	
   453			values.R = new(big.Int).Set(r)
   454			values.Coeff = new(big.Int).ModInverse(r, prime)
   455	
   456			r.Mul(r, prime)
   457		}
   458	}
   459	
   460	// decrypt performs an RSA decryption, resulting in a plaintext integer. If a
   461	// random source is given, RSA blinding is used.
   462	func decrypt(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err error) {
   463		// TODO(agl): can we get away with reusing blinds?
   464		if c.Cmp(priv.N) > 0 {
   465			err = ErrDecryption
   466			return
   467		}
   468		if priv.N.Sign() == 0 {
   469			return nil, ErrDecryption
   470		}
   471	
   472		var ir *big.Int
   473		if random != nil {
   474			randutil.MaybeReadByte(random)
   475	
   476			// Blinding enabled. Blinding involves multiplying c by r^e.
   477			// Then the decryption operation performs (m^e * r^e)^d mod n
   478			// which equals mr mod n. The factor of r can then be removed
   479			// by multiplying by the multiplicative inverse of r.
   480	
   481			var r *big.Int
   482			ir = new(big.Int)
   483			for {
   484				r, err = rand.Int(random, priv.N)
   485				if err != nil {
   486					return
   487				}
   488				if r.Cmp(bigZero) == 0 {
   489					r = bigOne
   490				}
   491				ok := ir.ModInverse(r, priv.N)
   492				if ok != nil {
   493					break
   494				}
   495			}
   496			bigE := big.NewInt(int64(priv.E))
   497			rpowe := new(big.Int).Exp(r, bigE, priv.N) // N != 0
   498			cCopy := new(big.Int).Set(c)
   499			cCopy.Mul(cCopy, rpowe)
   500			cCopy.Mod(cCopy, priv.N)
   501			c = cCopy
   502		}
   503	
   504		if priv.Precomputed.Dp == nil {
   505			m = new(big.Int).Exp(c, priv.D, priv.N)
   506		} else {
   507			// We have the precalculated values needed for the CRT.
   508			m = new(big.Int).Exp(c, priv.Precomputed.Dp, priv.Primes[0])
   509			m2 := new(big.Int).Exp(c, priv.Precomputed.Dq, priv.Primes[1])
   510			m.Sub(m, m2)
   511			if m.Sign() < 0 {
   512				m.Add(m, priv.Primes[0])
   513			}
   514			m.Mul(m, priv.Precomputed.Qinv)
   515			m.Mod(m, priv.Primes[0])
   516			m.Mul(m, priv.Primes[1])
   517			m.Add(m, m2)
   518	
   519			for i, values := range priv.Precomputed.CRTValues {
   520				prime := priv.Primes[2+i]
   521				m2.Exp(c, values.Exp, prime)
   522				m2.Sub(m2, m)
   523				m2.Mul(m2, values.Coeff)
   524				m2.Mod(m2, prime)
   525				if m2.Sign() < 0 {
   526					m2.Add(m2, prime)
   527				}
   528				m2.Mul(m2, values.R)
   529				m.Add(m, m2)
   530			}
   531		}
   532	
   533		if ir != nil {
   534			// Unblind.
   535			m.Mul(m, ir)
   536			m.Mod(m, priv.N)
   537		}
   538	
   539		return
   540	}
   541	
   542	func decryptAndCheck(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err error) {
   543		m, err = decrypt(random, priv, c)
   544		if err != nil {
   545			return nil, err
   546		}
   547	
   548		// In order to defend against errors in the CRT computation, m^e is
   549		// calculated, which should match the original ciphertext.
   550		check := encrypt(new(big.Int), &priv.PublicKey, m)
   551		if c.Cmp(check) != 0 {
   552			return nil, errors.New("rsa: internal error")
   553		}
   554		return m, nil
   555	}
   556	
   557	// DecryptOAEP decrypts ciphertext using RSA-OAEP.
   558	//
   559	// OAEP is parameterised by a hash function that is used as a random oracle.
   560	// Encryption and decryption of a given message must use the same hash function
   561	// and sha256.New() is a reasonable choice.
   562	//
   563	// The random parameter, if not nil, is used to blind the private-key operation
   564	// and avoid timing side-channel attacks. Blinding is purely internal to this
   565	// function – the random data need not match that used when encrypting.
   566	//
   567	// The label parameter must match the value given when encrypting. See
   568	// EncryptOAEP for details.
   569	func DecryptOAEP(hash hash.Hash, random io.Reader, priv *PrivateKey, ciphertext []byte, label []byte) ([]byte, error) {
   570		if err := checkPub(&priv.PublicKey); err != nil {
   571			return nil, err
   572		}
   573		k := priv.Size()
   574		if len(ciphertext) > k ||
   575			k < hash.Size()*2+2 {
   576			return nil, ErrDecryption
   577		}
   578	
   579		c := new(big.Int).SetBytes(ciphertext)
   580	
   581		m, err := decrypt(random, priv, c)
   582		if err != nil {
   583			return nil, err
   584		}
   585	
   586		hash.Write(label)
   587		lHash := hash.Sum(nil)
   588		hash.Reset()
   589	
   590		// Converting the plaintext number to bytes will strip any
   591		// leading zeros so we may have to left pad. We do this unconditionally
   592		// to avoid leaking timing information. (Although we still probably
   593		// leak the number of leading zeros. It's not clear that we can do
   594		// anything about this.)
   595		em := leftPad(m.Bytes(), k)
   596	
   597		firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0)
   598	
   599		seed := em[1 : hash.Size()+1]
   600		db := em[hash.Size()+1:]
   601	
   602		mgf1XOR(seed, hash, db)
   603		mgf1XOR(db, hash, seed)
   604	
   605		lHash2 := db[0:hash.Size()]
   606	
   607		// We have to validate the plaintext in constant time in order to avoid
   608		// attacks like: J. Manger. A Chosen Ciphertext Attack on RSA Optimal
   609		// Asymmetric Encryption Padding (OAEP) as Standardized in PKCS #1
   610		// v2.0. In J. Kilian, editor, Advances in Cryptology.
   611		lHash2Good := subtle.ConstantTimeCompare(lHash, lHash2)
   612	
   613		// The remainder of the plaintext must be zero or more 0x00, followed
   614		// by 0x01, followed by the message.
   615		//   lookingForIndex: 1 iff we are still looking for the 0x01
   616		//   index: the offset of the first 0x01 byte
   617		//   invalid: 1 iff we saw a non-zero byte before the 0x01.
   618		var lookingForIndex, index, invalid int
   619		lookingForIndex = 1
   620		rest := db[hash.Size():]
   621	
   622		for i := 0; i < len(rest); i++ {
   623			equals0 := subtle.ConstantTimeByteEq(rest[i], 0)
   624			equals1 := subtle.ConstantTimeByteEq(rest[i], 1)
   625			index = subtle.ConstantTimeSelect(lookingForIndex&equals1, i, index)
   626			lookingForIndex = subtle.ConstantTimeSelect(equals1, 0, lookingForIndex)
   627			invalid = subtle.ConstantTimeSelect(lookingForIndex&^equals0, 1, invalid)
   628		}
   629	
   630		if firstByteIsZero&lHash2Good&^invalid&^lookingForIndex != 1 {
   631			return nil, ErrDecryption
   632		}
   633	
   634		return rest[index+1:], nil
   635	}
   636	
   637	// leftPad returns a new slice of length size. The contents of input are right
   638	// aligned in the new slice.
   639	func leftPad(input []byte, size int) (out []byte) {
   640		n := len(input)
   641		if n > size {
   642			n = size
   643		}
   644		out = make([]byte, size)
   645		copy(out[len(out)-n:], input)
   646		return
   647	}
   648	

View as plain text