...

Source file src/pkg/container/heap/heap.go

     1	// Copyright 2009 The Go Authors. All rights reserved.
     2	// Use of this source code is governed by a BSD-style
     3	// license that can be found in the LICENSE file.
     4	
     5	// Package heap provides heap operations for any type that implements
     6	// heap.Interface. A heap is a tree with the property that each node is the
     7	// minimum-valued node in its subtree.
     8	//
     9	// The minimum element in the tree is the root, at index 0.
    10	//
    11	// A heap is a common way to implement a priority queue. To build a priority
    12	// queue, implement the Heap interface with the (negative) priority as the
    13	// ordering for the Less method, so Push adds items while Pop removes the
    14	// highest-priority item from the queue. The Examples include such an
    15	// implementation; the file example_pq_test.go has the complete source.
    16	//
    17	package heap
    18	
    19	import "sort"
    20	
    21	// The Interface type describes the requirements
    22	// for a type using the routines in this package.
    23	// Any type that implements it may be used as a
    24	// min-heap with the following invariants (established after
    25	// Init has been called or if the data is empty or sorted):
    26	//
    27	//	!h.Less(j, i) for 0 <= i < h.Len() and 2*i+1 <= j <= 2*i+2 and j < h.Len()
    28	//
    29	// Note that Push and Pop in this interface are for package heap's
    30	// implementation to call. To add and remove things from the heap,
    31	// use heap.Push and heap.Pop.
    32	type Interface interface {
    33		sort.Interface
    34		Push(x interface{}) // add x as element Len()
    35		Pop() interface{}   // remove and return element Len() - 1.
    36	}
    37	
    38	// Init establishes the heap invariants required by the other routines in this package.
    39	// Init is idempotent with respect to the heap invariants
    40	// and may be called whenever the heap invariants may have been invalidated.
    41	// The complexity is O(n) where n = h.Len().
    42	func Init(h Interface) {
    43		// heapify
    44		n := h.Len()
    45		for i := n/2 - 1; i >= 0; i-- {
    46			down(h, i, n)
    47		}
    48	}
    49	
    50	// Push pushes the element x onto the heap.
    51	// The complexity is O(log n) where n = h.Len().
    52	func Push(h Interface, x interface{}) {
    53		h.Push(x)
    54		up(h, h.Len()-1)
    55	}
    56	
    57	// Pop removes and returns the minimum element (according to Less) from the heap.
    58	// The complexity is O(log n) where n = h.Len().
    59	// Pop is equivalent to Remove(h, 0).
    60	func Pop(h Interface) interface{} {
    61		n := h.Len() - 1
    62		h.Swap(0, n)
    63		down(h, 0, n)
    64		return h.Pop()
    65	}
    66	
    67	// Remove removes and returns the element at index i from the heap.
    68	// The complexity is O(log n) where n = h.Len().
    69	func Remove(h Interface, i int) interface{} {
    70		n := h.Len() - 1
    71		if n != i {
    72			h.Swap(i, n)
    73			if !down(h, i, n) {
    74				up(h, i)
    75			}
    76		}
    77		return h.Pop()
    78	}
    79	
    80	// Fix re-establishes the heap ordering after the element at index i has changed its value.
    81	// Changing the value of the element at index i and then calling Fix is equivalent to,
    82	// but less expensive than, calling Remove(h, i) followed by a Push of the new value.
    83	// The complexity is O(log n) where n = h.Len().
    84	func Fix(h Interface, i int) {
    85		if !down(h, i, h.Len()) {
    86			up(h, i)
    87		}
    88	}
    89	
    90	func up(h Interface, j int) {
    91		for {
    92			i := (j - 1) / 2 // parent
    93			if i == j || !h.Less(j, i) {
    94				break
    95			}
    96			h.Swap(i, j)
    97			j = i
    98		}
    99	}
   100	
   101	func down(h Interface, i0, n int) bool {
   102		i := i0
   103		for {
   104			j1 := 2*i + 1
   105			if j1 >= n || j1 < 0 { // j1 < 0 after int overflow
   106				break
   107			}
   108			j := j1 // left child
   109			if j2 := j1 + 1; j2 < n && h.Less(j2, j1) {
   110				j = j2 // = 2*i + 2  // right child
   111			}
   112			if !h.Less(j, i) {
   113				break
   114			}
   115			h.Swap(i, j)
   116			i = j
   117		}
   118		return i > i0
   119	}
   120	

View as plain text