...

Source file src/pkg/cmd/compile/internal/ssa/func.go

     1	// Copyright 2015 The Go Authors. All rights reserved.
     2	// Use of this source code is governed by a BSD-style
     3	// license that can be found in the LICENSE file.
     4	
     5	package ssa
     6	
     7	import (
     8		"cmd/compile/internal/types"
     9		"cmd/internal/src"
    10		"crypto/sha1"
    11		"fmt"
    12		"io"
    13		"math"
    14		"os"
    15		"strings"
    16	)
    17	
    18	type writeSyncer interface {
    19		io.Writer
    20		Sync() error
    21	}
    22	
    23	// A Func represents a Go func declaration (or function literal) and its body.
    24	// This package compiles each Func independently.
    25	// Funcs are single-use; a new Func must be created for every compiled function.
    26	type Func struct {
    27		Config *Config     // architecture information
    28		Cache  *Cache      // re-usable cache
    29		fe     Frontend    // frontend state associated with this Func, callbacks into compiler frontend
    30		pass   *pass       // current pass information (name, options, etc.)
    31		Name   string      // e.g. NewFunc or (*Func).NumBlocks (no package prefix)
    32		Type   *types.Type // type signature of the function.
    33		Blocks []*Block    // unordered set of all basic blocks (note: not indexable by ID)
    34		Entry  *Block      // the entry basic block
    35		bid    idAlloc     // block ID allocator
    36		vid    idAlloc     // value ID allocator
    37	
    38		// Given an environment variable used for debug hash match,
    39		// what file (if any) receives the yes/no logging?
    40		logfiles       map[string]writeSyncer
    41		HTMLWriter     *HTMLWriter    // html writer, for debugging
    42		DebugTest      bool           // default true unless $GOSSAHASH != ""; as a debugging aid, make new code conditional on this and use GOSSAHASH to binary search for failing cases
    43		PrintOrHtmlSSA bool           // true if GOSSAFUNC matches, true even if fe.Log() (spew phase results to stdout) is false.
    44		ruleMatches    map[string]int // number of times countRule was called during compilation for any given string
    45	
    46		scheduled bool // Values in Blocks are in final order
    47		laidout   bool // Blocks are ordered
    48		NoSplit   bool // true if function is marked as nosplit.  Used by schedule check pass.
    49	
    50		// when register allocation is done, maps value ids to locations
    51		RegAlloc []Location
    52	
    53		// map from LocalSlot to set of Values that we want to store in that slot.
    54		NamedValues map[LocalSlot][]*Value
    55		// Names is a copy of NamedValues.Keys. We keep a separate list
    56		// of keys to make iteration order deterministic.
    57		Names []LocalSlot
    58	
    59		// WBLoads is a list of Blocks that branch on the write
    60		// barrier flag. Safe-points are disabled from the OpLoad that
    61		// reads the write-barrier flag until the control flow rejoins
    62		// below the two successors of this block.
    63		WBLoads []*Block
    64	
    65		freeValues *Value // free Values linked by argstorage[0].  All other fields except ID are 0/nil.
    66		freeBlocks *Block // free Blocks linked by succstorage[0].b.  All other fields except ID are 0/nil.
    67	
    68		cachedPostorder  []*Block   // cached postorder traversal
    69		cachedIdom       []*Block   // cached immediate dominators
    70		cachedSdom       SparseTree // cached dominator tree
    71		cachedLoopnest   *loopnest  // cached loop nest information
    72		cachedLineStarts *xposmap   // cached map/set of xpos to integers
    73	
    74		auxmap    auxmap             // map from aux values to opaque ids used by CSE
    75		constants map[int64][]*Value // constants cache, keyed by constant value; users must check value's Op and Type
    76	}
    77	
    78	// NewFunc returns a new, empty function object.
    79	// Caller must set f.Config and f.Cache before using f.
    80	func NewFunc(fe Frontend) *Func {
    81		return &Func{fe: fe, NamedValues: make(map[LocalSlot][]*Value)}
    82	}
    83	
    84	// NumBlocks returns an integer larger than the id of any Block in the Func.
    85	func (f *Func) NumBlocks() int {
    86		return f.bid.num()
    87	}
    88	
    89	// NumValues returns an integer larger than the id of any Value in the Func.
    90	func (f *Func) NumValues() int {
    91		return f.vid.num()
    92	}
    93	
    94	// newSparseSet returns a sparse set that can store at least up to n integers.
    95	func (f *Func) newSparseSet(n int) *sparseSet {
    96		for i, scr := range f.Cache.scrSparseSet {
    97			if scr != nil && scr.cap() >= n {
    98				f.Cache.scrSparseSet[i] = nil
    99				scr.clear()
   100				return scr
   101			}
   102		}
   103		return newSparseSet(n)
   104	}
   105	
   106	// retSparseSet returns a sparse set to the config's cache of sparse
   107	// sets to be reused by f.newSparseSet.
   108	func (f *Func) retSparseSet(ss *sparseSet) {
   109		for i, scr := range f.Cache.scrSparseSet {
   110			if scr == nil {
   111				f.Cache.scrSparseSet[i] = ss
   112				return
   113			}
   114		}
   115		f.Cache.scrSparseSet = append(f.Cache.scrSparseSet, ss)
   116	}
   117	
   118	// newSparseMap returns a sparse map that can store at least up to n integers.
   119	func (f *Func) newSparseMap(n int) *sparseMap {
   120		for i, scr := range f.Cache.scrSparseMap {
   121			if scr != nil && scr.cap() >= n {
   122				f.Cache.scrSparseMap[i] = nil
   123				scr.clear()
   124				return scr
   125			}
   126		}
   127		return newSparseMap(n)
   128	}
   129	
   130	// retSparseMap returns a sparse map to the config's cache of sparse
   131	// sets to be reused by f.newSparseMap.
   132	func (f *Func) retSparseMap(ss *sparseMap) {
   133		for i, scr := range f.Cache.scrSparseMap {
   134			if scr == nil {
   135				f.Cache.scrSparseMap[i] = ss
   136				return
   137			}
   138		}
   139		f.Cache.scrSparseMap = append(f.Cache.scrSparseMap, ss)
   140	}
   141	
   142	// newPoset returns a new poset from the internal cache
   143	func (f *Func) newPoset() *poset {
   144		if len(f.Cache.scrPoset) > 0 {
   145			po := f.Cache.scrPoset[len(f.Cache.scrPoset)-1]
   146			f.Cache.scrPoset = f.Cache.scrPoset[:len(f.Cache.scrPoset)-1]
   147			return po
   148		}
   149		return newPoset()
   150	}
   151	
   152	// retPoset returns a poset to the internal cache
   153	func (f *Func) retPoset(po *poset) {
   154		f.Cache.scrPoset = append(f.Cache.scrPoset, po)
   155	}
   156	
   157	// newDeadcodeLive returns a slice for the
   158	// deadcode pass to use to indicate which values are live.
   159	func (f *Func) newDeadcodeLive() []bool {
   160		r := f.Cache.deadcode.live
   161		f.Cache.deadcode.live = nil
   162		return r
   163	}
   164	
   165	// retDeadcodeLive returns a deadcode live value slice for re-use.
   166	func (f *Func) retDeadcodeLive(live []bool) {
   167		f.Cache.deadcode.live = live
   168	}
   169	
   170	// newDeadcodeLiveOrderStmts returns a slice for the
   171	// deadcode pass to use to indicate which values
   172	// need special treatment for statement boundaries.
   173	func (f *Func) newDeadcodeLiveOrderStmts() []*Value {
   174		r := f.Cache.deadcode.liveOrderStmts
   175		f.Cache.deadcode.liveOrderStmts = nil
   176		return r
   177	}
   178	
   179	// retDeadcodeLiveOrderStmts returns a deadcode liveOrderStmts slice for re-use.
   180	func (f *Func) retDeadcodeLiveOrderStmts(liveOrderStmts []*Value) {
   181		f.Cache.deadcode.liveOrderStmts = liveOrderStmts
   182	}
   183	
   184	// newValue allocates a new Value with the given fields and places it at the end of b.Values.
   185	func (f *Func) newValue(op Op, t *types.Type, b *Block, pos src.XPos) *Value {
   186		var v *Value
   187		if f.freeValues != nil {
   188			v = f.freeValues
   189			f.freeValues = v.argstorage[0]
   190			v.argstorage[0] = nil
   191		} else {
   192			ID := f.vid.get()
   193			if int(ID) < len(f.Cache.values) {
   194				v = &f.Cache.values[ID]
   195				v.ID = ID
   196			} else {
   197				v = &Value{ID: ID}
   198			}
   199		}
   200		v.Op = op
   201		v.Type = t
   202		v.Block = b
   203		if notStmtBoundary(op) {
   204			pos = pos.WithNotStmt()
   205		}
   206		v.Pos = pos
   207		b.Values = append(b.Values, v)
   208		return v
   209	}
   210	
   211	// newValueNoBlock allocates a new Value with the given fields.
   212	// The returned value is not placed in any block.  Once the caller
   213	// decides on a block b, it must set b.Block and append
   214	// the returned value to b.Values.
   215	func (f *Func) newValueNoBlock(op Op, t *types.Type, pos src.XPos) *Value {
   216		var v *Value
   217		if f.freeValues != nil {
   218			v = f.freeValues
   219			f.freeValues = v.argstorage[0]
   220			v.argstorage[0] = nil
   221		} else {
   222			ID := f.vid.get()
   223			if int(ID) < len(f.Cache.values) {
   224				v = &f.Cache.values[ID]
   225				v.ID = ID
   226			} else {
   227				v = &Value{ID: ID}
   228			}
   229		}
   230		v.Op = op
   231		v.Type = t
   232		v.Block = nil // caller must fix this.
   233		if notStmtBoundary(op) {
   234			pos = pos.WithNotStmt()
   235		}
   236		v.Pos = pos
   237		return v
   238	}
   239	
   240	// logPassStat writes a string key and int value as a warning in a
   241	// tab-separated format easily handled by spreadsheets or awk.
   242	// file names, lines, and function names are included to provide enough (?)
   243	// context to allow item-by-item comparisons across runs.
   244	// For example:
   245	// awk 'BEGIN {FS="\t"} $3~/TIME/{sum+=$4} END{print "t(ns)=",sum}' t.log
   246	func (f *Func) LogStat(key string, args ...interface{}) {
   247		value := ""
   248		for _, a := range args {
   249			value += fmt.Sprintf("\t%v", a)
   250		}
   251		n := "missing_pass"
   252		if f.pass != nil {
   253			n = strings.Replace(f.pass.name, " ", "_", -1)
   254		}
   255		f.Warnl(f.Entry.Pos, "\t%s\t%s%s\t%s", n, key, value, f.Name)
   256	}
   257	
   258	// freeValue frees a value. It must no longer be referenced or have any args.
   259	func (f *Func) freeValue(v *Value) {
   260		if v.Block == nil {
   261			f.Fatalf("trying to free an already freed value")
   262		}
   263		if v.Uses != 0 {
   264			f.Fatalf("value %s still has %d uses", v, v.Uses)
   265		}
   266		if len(v.Args) != 0 {
   267			f.Fatalf("value %s still has %d args", v, len(v.Args))
   268		}
   269		// Clear everything but ID (which we reuse).
   270		id := v.ID
   271	
   272		// Values with zero arguments and OpOffPtr values might be cached, so remove them there.
   273		nArgs := opcodeTable[v.Op].argLen
   274		if nArgs == 0 || v.Op == OpOffPtr {
   275			vv := f.constants[v.AuxInt]
   276			for i, cv := range vv {
   277				if v == cv {
   278					vv[i] = vv[len(vv)-1]
   279					vv[len(vv)-1] = nil
   280					f.constants[v.AuxInt] = vv[0 : len(vv)-1]
   281					break
   282				}
   283			}
   284		}
   285		*v = Value{}
   286		v.ID = id
   287		v.argstorage[0] = f.freeValues
   288		f.freeValues = v
   289	}
   290	
   291	// newBlock allocates a new Block of the given kind and places it at the end of f.Blocks.
   292	func (f *Func) NewBlock(kind BlockKind) *Block {
   293		var b *Block
   294		if f.freeBlocks != nil {
   295			b = f.freeBlocks
   296			f.freeBlocks = b.succstorage[0].b
   297			b.succstorage[0].b = nil
   298		} else {
   299			ID := f.bid.get()
   300			if int(ID) < len(f.Cache.blocks) {
   301				b = &f.Cache.blocks[ID]
   302				b.ID = ID
   303			} else {
   304				b = &Block{ID: ID}
   305			}
   306		}
   307		b.Kind = kind
   308		b.Func = f
   309		b.Preds = b.predstorage[:0]
   310		b.Succs = b.succstorage[:0]
   311		b.Values = b.valstorage[:0]
   312		f.Blocks = append(f.Blocks, b)
   313		f.invalidateCFG()
   314		return b
   315	}
   316	
   317	func (f *Func) freeBlock(b *Block) {
   318		if b.Func == nil {
   319			f.Fatalf("trying to free an already freed block")
   320		}
   321		// Clear everything but ID (which we reuse).
   322		id := b.ID
   323		*b = Block{}
   324		b.ID = id
   325		b.succstorage[0].b = f.freeBlocks
   326		f.freeBlocks = b
   327	}
   328	
   329	// NewValue0 returns a new value in the block with no arguments and zero aux values.
   330	func (b *Block) NewValue0(pos src.XPos, op Op, t *types.Type) *Value {
   331		v := b.Func.newValue(op, t, b, pos)
   332		v.AuxInt = 0
   333		v.Args = v.argstorage[:0]
   334		return v
   335	}
   336	
   337	// NewValue returns a new value in the block with no arguments and an auxint value.
   338	func (b *Block) NewValue0I(pos src.XPos, op Op, t *types.Type, auxint int64) *Value {
   339		v := b.Func.newValue(op, t, b, pos)
   340		v.AuxInt = auxint
   341		v.Args = v.argstorage[:0]
   342		return v
   343	}
   344	
   345	// NewValue returns a new value in the block with no arguments and an aux value.
   346	func (b *Block) NewValue0A(pos src.XPos, op Op, t *types.Type, aux interface{}) *Value {
   347		if _, ok := aux.(int64); ok {
   348			// Disallow int64 aux values. They should be in the auxint field instead.
   349			// Maybe we want to allow this at some point, but for now we disallow it
   350			// to prevent errors like using NewValue1A instead of NewValue1I.
   351			b.Fatalf("aux field has int64 type op=%s type=%s aux=%v", op, t, aux)
   352		}
   353		v := b.Func.newValue(op, t, b, pos)
   354		v.AuxInt = 0
   355		v.Aux = aux
   356		v.Args = v.argstorage[:0]
   357		return v
   358	}
   359	
   360	// NewValue returns a new value in the block with no arguments and both an auxint and aux values.
   361	func (b *Block) NewValue0IA(pos src.XPos, op Op, t *types.Type, auxint int64, aux interface{}) *Value {
   362		v := b.Func.newValue(op, t, b, pos)
   363		v.AuxInt = auxint
   364		v.Aux = aux
   365		v.Args = v.argstorage[:0]
   366		return v
   367	}
   368	
   369	// NewValue1 returns a new value in the block with one argument and zero aux values.
   370	func (b *Block) NewValue1(pos src.XPos, op Op, t *types.Type, arg *Value) *Value {
   371		v := b.Func.newValue(op, t, b, pos)
   372		v.AuxInt = 0
   373		v.Args = v.argstorage[:1]
   374		v.argstorage[0] = arg
   375		arg.Uses++
   376		return v
   377	}
   378	
   379	// NewValue1I returns a new value in the block with one argument and an auxint value.
   380	func (b *Block) NewValue1I(pos src.XPos, op Op, t *types.Type, auxint int64, arg *Value) *Value {
   381		v := b.Func.newValue(op, t, b, pos)
   382		v.AuxInt = auxint
   383		v.Args = v.argstorage[:1]
   384		v.argstorage[0] = arg
   385		arg.Uses++
   386		return v
   387	}
   388	
   389	// NewValue1A returns a new value in the block with one argument and an aux value.
   390	func (b *Block) NewValue1A(pos src.XPos, op Op, t *types.Type, aux interface{}, arg *Value) *Value {
   391		v := b.Func.newValue(op, t, b, pos)
   392		v.AuxInt = 0
   393		v.Aux = aux
   394		v.Args = v.argstorage[:1]
   395		v.argstorage[0] = arg
   396		arg.Uses++
   397		return v
   398	}
   399	
   400	// NewValue1IA returns a new value in the block with one argument and both an auxint and aux values.
   401	func (b *Block) NewValue1IA(pos src.XPos, op Op, t *types.Type, auxint int64, aux interface{}, arg *Value) *Value {
   402		v := b.Func.newValue(op, t, b, pos)
   403		v.AuxInt = auxint
   404		v.Aux = aux
   405		v.Args = v.argstorage[:1]
   406		v.argstorage[0] = arg
   407		arg.Uses++
   408		return v
   409	}
   410	
   411	// NewValue2 returns a new value in the block with two arguments and zero aux values.
   412	func (b *Block) NewValue2(pos src.XPos, op Op, t *types.Type, arg0, arg1 *Value) *Value {
   413		v := b.Func.newValue(op, t, b, pos)
   414		v.AuxInt = 0
   415		v.Args = v.argstorage[:2]
   416		v.argstorage[0] = arg0
   417		v.argstorage[1] = arg1
   418		arg0.Uses++
   419		arg1.Uses++
   420		return v
   421	}
   422	
   423	// NewValue2A returns a new value in the block with two arguments and one aux values.
   424	func (b *Block) NewValue2A(pos src.XPos, op Op, t *types.Type, aux interface{}, arg0, arg1 *Value) *Value {
   425		v := b.Func.newValue(op, t, b, pos)
   426		v.AuxInt = 0
   427		v.Aux = aux
   428		v.Args = v.argstorage[:2]
   429		v.argstorage[0] = arg0
   430		v.argstorage[1] = arg1
   431		arg0.Uses++
   432		arg1.Uses++
   433		return v
   434	}
   435	
   436	// NewValue2I returns a new value in the block with two arguments and an auxint value.
   437	func (b *Block) NewValue2I(pos src.XPos, op Op, t *types.Type, auxint int64, arg0, arg1 *Value) *Value {
   438		v := b.Func.newValue(op, t, b, pos)
   439		v.AuxInt = auxint
   440		v.Args = v.argstorage[:2]
   441		v.argstorage[0] = arg0
   442		v.argstorage[1] = arg1
   443		arg0.Uses++
   444		arg1.Uses++
   445		return v
   446	}
   447	
   448	// NewValue2IA returns a new value in the block with two arguments and both an auxint and aux values.
   449	func (b *Block) NewValue2IA(pos src.XPos, op Op, t *types.Type, auxint int64, aux interface{}, arg0, arg1 *Value) *Value {
   450		v := b.Func.newValue(op, t, b, pos)
   451		v.AuxInt = auxint
   452		v.Aux = aux
   453		v.Args = v.argstorage[:2]
   454		v.argstorage[0] = arg0
   455		v.argstorage[1] = arg1
   456		arg0.Uses++
   457		arg1.Uses++
   458		return v
   459	}
   460	
   461	// NewValue3 returns a new value in the block with three arguments and zero aux values.
   462	func (b *Block) NewValue3(pos src.XPos, op Op, t *types.Type, arg0, arg1, arg2 *Value) *Value {
   463		v := b.Func.newValue(op, t, b, pos)
   464		v.AuxInt = 0
   465		v.Args = v.argstorage[:3]
   466		v.argstorage[0] = arg0
   467		v.argstorage[1] = arg1
   468		v.argstorage[2] = arg2
   469		arg0.Uses++
   470		arg1.Uses++
   471		arg2.Uses++
   472		return v
   473	}
   474	
   475	// NewValue3I returns a new value in the block with three arguments and an auxint value.
   476	func (b *Block) NewValue3I(pos src.XPos, op Op, t *types.Type, auxint int64, arg0, arg1, arg2 *Value) *Value {
   477		v := b.Func.newValue(op, t, b, pos)
   478		v.AuxInt = auxint
   479		v.Args = v.argstorage[:3]
   480		v.argstorage[0] = arg0
   481		v.argstorage[1] = arg1
   482		v.argstorage[2] = arg2
   483		arg0.Uses++
   484		arg1.Uses++
   485		arg2.Uses++
   486		return v
   487	}
   488	
   489	// NewValue3A returns a new value in the block with three argument and an aux value.
   490	func (b *Block) NewValue3A(pos src.XPos, op Op, t *types.Type, aux interface{}, arg0, arg1, arg2 *Value) *Value {
   491		v := b.Func.newValue(op, t, b, pos)
   492		v.AuxInt = 0
   493		v.Aux = aux
   494		v.Args = v.argstorage[:3]
   495		v.argstorage[0] = arg0
   496		v.argstorage[1] = arg1
   497		v.argstorage[2] = arg2
   498		arg0.Uses++
   499		arg1.Uses++
   500		arg2.Uses++
   501		return v
   502	}
   503	
   504	// NewValue4 returns a new value in the block with four arguments and zero aux values.
   505	func (b *Block) NewValue4(pos src.XPos, op Op, t *types.Type, arg0, arg1, arg2, arg3 *Value) *Value {
   506		v := b.Func.newValue(op, t, b, pos)
   507		v.AuxInt = 0
   508		v.Args = []*Value{arg0, arg1, arg2, arg3}
   509		arg0.Uses++
   510		arg1.Uses++
   511		arg2.Uses++
   512		arg3.Uses++
   513		return v
   514	}
   515	
   516	// NewValue4I returns a new value in the block with four arguments and and auxint value.
   517	func (b *Block) NewValue4I(pos src.XPos, op Op, t *types.Type, auxint int64, arg0, arg1, arg2, arg3 *Value) *Value {
   518		v := b.Func.newValue(op, t, b, pos)
   519		v.AuxInt = auxint
   520		v.Args = []*Value{arg0, arg1, arg2, arg3}
   521		arg0.Uses++
   522		arg1.Uses++
   523		arg2.Uses++
   524		arg3.Uses++
   525		return v
   526	}
   527	
   528	// constVal returns a constant value for c.
   529	func (f *Func) constVal(op Op, t *types.Type, c int64, setAuxInt bool) *Value {
   530		if f.constants == nil {
   531			f.constants = make(map[int64][]*Value)
   532		}
   533		vv := f.constants[c]
   534		for _, v := range vv {
   535			if v.Op == op && v.Type.Compare(t) == types.CMPeq {
   536				if setAuxInt && v.AuxInt != c {
   537					panic(fmt.Sprintf("cached const %s should have AuxInt of %d", v.LongString(), c))
   538				}
   539				return v
   540			}
   541		}
   542		var v *Value
   543		if setAuxInt {
   544			v = f.Entry.NewValue0I(src.NoXPos, op, t, c)
   545		} else {
   546			v = f.Entry.NewValue0(src.NoXPos, op, t)
   547		}
   548		f.constants[c] = append(vv, v)
   549		return v
   550	}
   551	
   552	// These magic auxint values let us easily cache non-numeric constants
   553	// using the same constants map while making collisions unlikely.
   554	// These values are unlikely to occur in regular code and
   555	// are easy to grep for in case of bugs.
   556	const (
   557		constSliceMagic       = 1122334455
   558		constInterfaceMagic   = 2233445566
   559		constNilMagic         = 3344556677
   560		constEmptyStringMagic = 4455667788
   561	)
   562	
   563	// ConstInt returns an int constant representing its argument.
   564	func (f *Func) ConstBool(t *types.Type, c bool) *Value {
   565		i := int64(0)
   566		if c {
   567			i = 1
   568		}
   569		return f.constVal(OpConstBool, t, i, true)
   570	}
   571	func (f *Func) ConstInt8(t *types.Type, c int8) *Value {
   572		return f.constVal(OpConst8, t, int64(c), true)
   573	}
   574	func (f *Func) ConstInt16(t *types.Type, c int16) *Value {
   575		return f.constVal(OpConst16, t, int64(c), true)
   576	}
   577	func (f *Func) ConstInt32(t *types.Type, c int32) *Value {
   578		return f.constVal(OpConst32, t, int64(c), true)
   579	}
   580	func (f *Func) ConstInt64(t *types.Type, c int64) *Value {
   581		return f.constVal(OpConst64, t, c, true)
   582	}
   583	func (f *Func) ConstFloat32(t *types.Type, c float64) *Value {
   584		return f.constVal(OpConst32F, t, int64(math.Float64bits(float64(float32(c)))), true)
   585	}
   586	func (f *Func) ConstFloat64(t *types.Type, c float64) *Value {
   587		return f.constVal(OpConst64F, t, int64(math.Float64bits(c)), true)
   588	}
   589	
   590	func (f *Func) ConstSlice(t *types.Type) *Value {
   591		return f.constVal(OpConstSlice, t, constSliceMagic, false)
   592	}
   593	func (f *Func) ConstInterface(t *types.Type) *Value {
   594		return f.constVal(OpConstInterface, t, constInterfaceMagic, false)
   595	}
   596	func (f *Func) ConstNil(t *types.Type) *Value {
   597		return f.constVal(OpConstNil, t, constNilMagic, false)
   598	}
   599	func (f *Func) ConstEmptyString(t *types.Type) *Value {
   600		v := f.constVal(OpConstString, t, constEmptyStringMagic, false)
   601		v.Aux = ""
   602		return v
   603	}
   604	func (f *Func) ConstOffPtrSP(t *types.Type, c int64, sp *Value) *Value {
   605		v := f.constVal(OpOffPtr, t, c, true)
   606		if len(v.Args) == 0 {
   607			v.AddArg(sp)
   608		}
   609		return v
   610	
   611	}
   612	
   613	func (f *Func) Frontend() Frontend                                  { return f.fe }
   614	func (f *Func) Warnl(pos src.XPos, msg string, args ...interface{}) { f.fe.Warnl(pos, msg, args...) }
   615	func (f *Func) Logf(msg string, args ...interface{})                { f.fe.Logf(msg, args...) }
   616	func (f *Func) Log() bool                                           { return f.fe.Log() }
   617	func (f *Func) Fatalf(msg string, args ...interface{})              { f.fe.Fatalf(f.Entry.Pos, msg, args...) }
   618	
   619	// postorder returns the reachable blocks in f in a postorder traversal.
   620	func (f *Func) postorder() []*Block {
   621		if f.cachedPostorder == nil {
   622			f.cachedPostorder = postorder(f)
   623		}
   624		return f.cachedPostorder
   625	}
   626	
   627	func (f *Func) Postorder() []*Block {
   628		return f.postorder()
   629	}
   630	
   631	// Idom returns a map from block ID to the immediate dominator of that block.
   632	// f.Entry.ID maps to nil. Unreachable blocks map to nil as well.
   633	func (f *Func) Idom() []*Block {
   634		if f.cachedIdom == nil {
   635			f.cachedIdom = dominators(f)
   636		}
   637		return f.cachedIdom
   638	}
   639	
   640	// sdom returns a sparse tree representing the dominator relationships
   641	// among the blocks of f.
   642	func (f *Func) sdom() SparseTree {
   643		if f.cachedSdom == nil {
   644			f.cachedSdom = newSparseTree(f, f.Idom())
   645		}
   646		return f.cachedSdom
   647	}
   648	
   649	// loopnest returns the loop nest information for f.
   650	func (f *Func) loopnest() *loopnest {
   651		if f.cachedLoopnest == nil {
   652			f.cachedLoopnest = loopnestfor(f)
   653		}
   654		return f.cachedLoopnest
   655	}
   656	
   657	// invalidateCFG tells f that its CFG has changed.
   658	func (f *Func) invalidateCFG() {
   659		f.cachedPostorder = nil
   660		f.cachedIdom = nil
   661		f.cachedSdom = nil
   662		f.cachedLoopnest = nil
   663	}
   664	
   665	// DebugHashMatch reports whether environment variable evname
   666	// 1) is empty (this is a special more-quickly implemented case of 3)
   667	// 2) is "y" or "Y"
   668	// 3) is a suffix of the sha1 hash of name
   669	// 4) is a suffix of the environment variable
   670	//    fmt.Sprintf("%s%d", evname, n)
   671	//    provided that all such variables are nonempty for 0 <= i <= n
   672	// Otherwise it returns false.
   673	// When true is returned the message
   674	//  "%s triggered %s\n", evname, name
   675	// is printed on the file named in environment variable
   676	//  GSHS_LOGFILE
   677	// or standard out if that is empty or there is an error
   678	// opening the file.
   679	func (f *Func) DebugHashMatch(evname, name string) bool {
   680		evhash := os.Getenv(evname)
   681		switch evhash {
   682		case "":
   683			return true // default behavior with no EV is "on"
   684		case "y", "Y":
   685			f.logDebugHashMatch(evname, name)
   686			return true
   687		case "n", "N":
   688			return false
   689		}
   690		// Check the hash of the name against a partial input hash.
   691		// We use this feature to do a binary search to
   692		// find a function that is incorrectly compiled.
   693		hstr := ""
   694		for _, b := range sha1.Sum([]byte(name)) {
   695			hstr += fmt.Sprintf("%08b", b)
   696		}
   697	
   698		if strings.HasSuffix(hstr, evhash) {
   699			f.logDebugHashMatch(evname, name)
   700			return true
   701		}
   702	
   703		// Iteratively try additional hashes to allow tests for multi-point
   704		// failure.
   705		for i := 0; true; i++ {
   706			ev := fmt.Sprintf("%s%d", evname, i)
   707			evv := os.Getenv(ev)
   708			if evv == "" {
   709				break
   710			}
   711			if strings.HasSuffix(hstr, evv) {
   712				f.logDebugHashMatch(ev, name)
   713				return true
   714			}
   715		}
   716		return false
   717	}
   718	
   719	func (f *Func) logDebugHashMatch(evname, name string) {
   720		if f.logfiles == nil {
   721			f.logfiles = make(map[string]writeSyncer)
   722		}
   723		file := f.logfiles[evname]
   724		if file == nil {
   725			file = os.Stdout
   726			if tmpfile := os.Getenv("GSHS_LOGFILE"); tmpfile != "" {
   727				var err error
   728				file, err = os.Create(tmpfile)
   729				if err != nil {
   730					f.Fatalf("could not open hash-testing logfile %s", tmpfile)
   731				}
   732			}
   733			f.logfiles[evname] = file
   734		}
   735		fmt.Fprintf(file, "%s triggered %s\n", evname, name)
   736		file.Sync()
   737	}
   738	
   739	func DebugNameMatch(evname, name string) bool {
   740		return os.Getenv(evname) == name
   741	}
   742	

View as plain text