...

Source file src/pkg/cmd/compile/internal/gc/syntax.go

     1	// Copyright 2009 The Go Authors. All rights reserved.
     2	// Use of this source code is governed by a BSD-style
     3	// license that can be found in the LICENSE file.
     4	
     5	// “Abstract” syntax representation.
     6	
     7	package gc
     8	
     9	import (
    10		"cmd/compile/internal/ssa"
    11		"cmd/compile/internal/syntax"
    12		"cmd/compile/internal/types"
    13		"cmd/internal/obj"
    14		"cmd/internal/src"
    15		"sort"
    16	)
    17	
    18	// A Node is a single node in the syntax tree.
    19	// Actually the syntax tree is a syntax DAG, because there is only one
    20	// node with Op=ONAME for a given instance of a variable x.
    21	// The same is true for Op=OTYPE and Op=OLITERAL. See Node.mayBeShared.
    22	type Node struct {
    23		// Tree structure.
    24		// Generic recursive walks should follow these fields.
    25		Left  *Node
    26		Right *Node
    27		Ninit Nodes
    28		Nbody Nodes
    29		List  Nodes
    30		Rlist Nodes
    31	
    32		// most nodes
    33		Type *types.Type
    34		Orig *Node // original form, for printing, and tracking copies of ONAMEs
    35	
    36		// func
    37		Func *Func
    38	
    39		// ONAME, OTYPE, OPACK, OLABEL, some OLITERAL
    40		Name *Name
    41	
    42		Sym *types.Sym  // various
    43		E   interface{} // Opt or Val, see methods below
    44	
    45		// Various. Usually an offset into a struct. For example:
    46		// - ONAME nodes that refer to local variables use it to identify their stack frame position.
    47		// - ODOT, ODOTPTR, and ORESULT use it to indicate offset relative to their base address.
    48		// - OSTRUCTKEY uses it to store the named field's offset.
    49		// - Named OLITERALs use it to store their ambient iota value.
    50		// - OINLMARK stores an index into the inlTree data structure.
    51		// Possibly still more uses. If you find any, document them.
    52		Xoffset int64
    53	
    54		Pos src.XPos
    55	
    56		flags bitset32
    57	
    58		Esc uint16 // EscXXX
    59	
    60		Op  Op
    61		aux uint8
    62	}
    63	
    64	func (n *Node) ResetAux() {
    65		n.aux = 0
    66	}
    67	
    68	func (n *Node) SubOp() Op {
    69		switch n.Op {
    70		case OASOP, ONAME:
    71		default:
    72			Fatalf("unexpected op: %v", n.Op)
    73		}
    74		return Op(n.aux)
    75	}
    76	
    77	func (n *Node) SetSubOp(op Op) {
    78		switch n.Op {
    79		case OASOP, ONAME:
    80		default:
    81			Fatalf("unexpected op: %v", n.Op)
    82		}
    83		n.aux = uint8(op)
    84	}
    85	
    86	func (n *Node) IndexMapLValue() bool {
    87		if n.Op != OINDEXMAP {
    88			Fatalf("unexpected op: %v", n.Op)
    89		}
    90		return n.aux != 0
    91	}
    92	
    93	func (n *Node) SetIndexMapLValue(b bool) {
    94		if n.Op != OINDEXMAP {
    95			Fatalf("unexpected op: %v", n.Op)
    96		}
    97		if b {
    98			n.aux = 1
    99		} else {
   100			n.aux = 0
   101		}
   102	}
   103	
   104	func (n *Node) TChanDir() types.ChanDir {
   105		if n.Op != OTCHAN {
   106			Fatalf("unexpected op: %v", n.Op)
   107		}
   108		return types.ChanDir(n.aux)
   109	}
   110	
   111	func (n *Node) SetTChanDir(dir types.ChanDir) {
   112		if n.Op != OTCHAN {
   113			Fatalf("unexpected op: %v", n.Op)
   114		}
   115		n.aux = uint8(dir)
   116	}
   117	
   118	func (n *Node) IsSynthetic() bool {
   119		name := n.Sym.Name
   120		return name[0] == '.' || name[0] == '~'
   121	}
   122	
   123	// IsAutoTmp indicates if n was created by the compiler as a temporary,
   124	// based on the setting of the .AutoTemp flag in n's Name.
   125	func (n *Node) IsAutoTmp() bool {
   126		if n == nil || n.Op != ONAME {
   127			return false
   128		}
   129		return n.Name.AutoTemp()
   130	}
   131	
   132	const (
   133		nodeClass, _     = iota, 1 << iota // PPARAM, PAUTO, PEXTERN, etc; three bits; first in the list because frequently accessed
   134		_, _                               // second nodeClass bit
   135		_, _                               // third nodeClass bit
   136		nodeWalkdef, _                     // tracks state during typecheckdef; 2 == loop detected; two bits
   137		_, _                               // second nodeWalkdef bit
   138		nodeTypecheck, _                   // tracks state during typechecking; 2 == loop detected; two bits
   139		_, _                               // second nodeTypecheck bit
   140		nodeInitorder, _                   // tracks state during init1; two bits
   141		_, _                               // second nodeInitorder bit
   142		_, nodeHasBreak
   143		_, nodeIsClosureVar
   144		_, nodeIsOutputParamHeapAddr
   145		_, nodeNoInline  // used internally by inliner to indicate that a function call should not be inlined; set for OCALLFUNC and OCALLMETH only
   146		_, nodeAssigned  // is the variable ever assigned to
   147		_, nodeAddrtaken // address taken, even if not moved to heap
   148		_, nodeImplicit
   149		_, nodeIsDDD     // is the argument variadic
   150		_, nodeDiag      // already printed error about this
   151		_, nodeColas     // OAS resulting from :=
   152		_, nodeNonNil    // guaranteed to be non-nil
   153		_, nodeNoescape  // func arguments do not escape; TODO(rsc): move Noescape to Func struct (see CL 7360)
   154		_, nodeBounded   // bounds check unnecessary
   155		_, nodeAddable   // addressable
   156		_, nodeHasCall   // expression contains a function call
   157		_, nodeLikely    // if statement condition likely
   158		_, nodeHasVal    // node.E contains a Val
   159		_, nodeHasOpt    // node.E contains an Opt
   160		_, nodeEmbedded  // ODCLFIELD embedded type
   161		_, nodeInlFormal // OPAUTO created by inliner, derived from callee formal
   162		_, nodeInlLocal  // OPAUTO created by inliner, derived from callee local
   163	)
   164	
   165	func (n *Node) Class() Class     { return Class(n.flags.get3(nodeClass)) }
   166	func (n *Node) Walkdef() uint8   { return n.flags.get2(nodeWalkdef) }
   167	func (n *Node) Typecheck() uint8 { return n.flags.get2(nodeTypecheck) }
   168	func (n *Node) Initorder() uint8 { return n.flags.get2(nodeInitorder) }
   169	
   170	func (n *Node) HasBreak() bool              { return n.flags&nodeHasBreak != 0 }
   171	func (n *Node) IsClosureVar() bool          { return n.flags&nodeIsClosureVar != 0 }
   172	func (n *Node) NoInline() bool              { return n.flags&nodeNoInline != 0 }
   173	func (n *Node) IsOutputParamHeapAddr() bool { return n.flags&nodeIsOutputParamHeapAddr != 0 }
   174	func (n *Node) Assigned() bool              { return n.flags&nodeAssigned != 0 }
   175	func (n *Node) Addrtaken() bool             { return n.flags&nodeAddrtaken != 0 }
   176	func (n *Node) Implicit() bool              { return n.flags&nodeImplicit != 0 }
   177	func (n *Node) IsDDD() bool                 { return n.flags&nodeIsDDD != 0 }
   178	func (n *Node) Diag() bool                  { return n.flags&nodeDiag != 0 }
   179	func (n *Node) Colas() bool                 { return n.flags&nodeColas != 0 }
   180	func (n *Node) NonNil() bool                { return n.flags&nodeNonNil != 0 }
   181	func (n *Node) Noescape() bool              { return n.flags&nodeNoescape != 0 }
   182	func (n *Node) Bounded() bool               { return n.flags&nodeBounded != 0 }
   183	func (n *Node) Addable() bool               { return n.flags&nodeAddable != 0 }
   184	func (n *Node) HasCall() bool               { return n.flags&nodeHasCall != 0 }
   185	func (n *Node) Likely() bool                { return n.flags&nodeLikely != 0 }
   186	func (n *Node) HasVal() bool                { return n.flags&nodeHasVal != 0 }
   187	func (n *Node) HasOpt() bool                { return n.flags&nodeHasOpt != 0 }
   188	func (n *Node) Embedded() bool              { return n.flags&nodeEmbedded != 0 }
   189	func (n *Node) InlFormal() bool             { return n.flags&nodeInlFormal != 0 }
   190	func (n *Node) InlLocal() bool              { return n.flags&nodeInlLocal != 0 }
   191	
   192	func (n *Node) SetClass(b Class)     { n.flags.set3(nodeClass, uint8(b)) }
   193	func (n *Node) SetWalkdef(b uint8)   { n.flags.set2(nodeWalkdef, b) }
   194	func (n *Node) SetTypecheck(b uint8) { n.flags.set2(nodeTypecheck, b) }
   195	func (n *Node) SetInitorder(b uint8) { n.flags.set2(nodeInitorder, b) }
   196	
   197	func (n *Node) SetHasBreak(b bool)              { n.flags.set(nodeHasBreak, b) }
   198	func (n *Node) SetIsClosureVar(b bool)          { n.flags.set(nodeIsClosureVar, b) }
   199	func (n *Node) SetNoInline(b bool)              { n.flags.set(nodeNoInline, b) }
   200	func (n *Node) SetIsOutputParamHeapAddr(b bool) { n.flags.set(nodeIsOutputParamHeapAddr, b) }
   201	func (n *Node) SetAssigned(b bool)              { n.flags.set(nodeAssigned, b) }
   202	func (n *Node) SetAddrtaken(b bool)             { n.flags.set(nodeAddrtaken, b) }
   203	func (n *Node) SetImplicit(b bool)              { n.flags.set(nodeImplicit, b) }
   204	func (n *Node) SetIsDDD(b bool)                 { n.flags.set(nodeIsDDD, b) }
   205	func (n *Node) SetDiag(b bool)                  { n.flags.set(nodeDiag, b) }
   206	func (n *Node) SetColas(b bool)                 { n.flags.set(nodeColas, b) }
   207	func (n *Node) SetNonNil(b bool)                { n.flags.set(nodeNonNil, b) }
   208	func (n *Node) SetNoescape(b bool)              { n.flags.set(nodeNoescape, b) }
   209	func (n *Node) SetBounded(b bool)               { n.flags.set(nodeBounded, b) }
   210	func (n *Node) SetAddable(b bool)               { n.flags.set(nodeAddable, b) }
   211	func (n *Node) SetHasCall(b bool)               { n.flags.set(nodeHasCall, b) }
   212	func (n *Node) SetLikely(b bool)                { n.flags.set(nodeLikely, b) }
   213	func (n *Node) SetHasVal(b bool)                { n.flags.set(nodeHasVal, b) }
   214	func (n *Node) SetHasOpt(b bool)                { n.flags.set(nodeHasOpt, b) }
   215	func (n *Node) SetEmbedded(b bool)              { n.flags.set(nodeEmbedded, b) }
   216	func (n *Node) SetInlFormal(b bool)             { n.flags.set(nodeInlFormal, b) }
   217	func (n *Node) SetInlLocal(b bool)              { n.flags.set(nodeInlLocal, b) }
   218	
   219	// Val returns the Val for the node.
   220	func (n *Node) Val() Val {
   221		if !n.HasVal() {
   222			return Val{}
   223		}
   224		return Val{n.E}
   225	}
   226	
   227	// SetVal sets the Val for the node, which must not have been used with SetOpt.
   228	func (n *Node) SetVal(v Val) {
   229		if n.HasOpt() {
   230			Debug['h'] = 1
   231			Dump("have Opt", n)
   232			Fatalf("have Opt")
   233		}
   234		n.SetHasVal(true)
   235		n.E = v.U
   236	}
   237	
   238	// Opt returns the optimizer data for the node.
   239	func (n *Node) Opt() interface{} {
   240		if !n.HasOpt() {
   241			return nil
   242		}
   243		return n.E
   244	}
   245	
   246	// SetOpt sets the optimizer data for the node, which must not have been used with SetVal.
   247	// SetOpt(nil) is ignored for Vals to simplify call sites that are clearing Opts.
   248	func (n *Node) SetOpt(x interface{}) {
   249		if x == nil && n.HasVal() {
   250			return
   251		}
   252		if n.HasVal() {
   253			Debug['h'] = 1
   254			Dump("have Val", n)
   255			Fatalf("have Val")
   256		}
   257		n.SetHasOpt(true)
   258		n.E = x
   259	}
   260	
   261	func (n *Node) Iota() int64 {
   262		return n.Xoffset
   263	}
   264	
   265	func (n *Node) SetIota(x int64) {
   266		n.Xoffset = x
   267	}
   268	
   269	// mayBeShared reports whether n may occur in multiple places in the AST.
   270	// Extra care must be taken when mutating such a node.
   271	func (n *Node) mayBeShared() bool {
   272		switch n.Op {
   273		case ONAME, OLITERAL, OTYPE:
   274			return true
   275		}
   276		return false
   277	}
   278	
   279	// isMethodExpression reports whether n represents a method expression T.M.
   280	func (n *Node) isMethodExpression() bool {
   281		return n.Op == ONAME && n.Left != nil && n.Left.Op == OTYPE && n.Right != nil && n.Right.Op == ONAME
   282	}
   283	
   284	// funcname returns the name (without the package) of the function n.
   285	func (n *Node) funcname() string {
   286		if n == nil || n.Func == nil || n.Func.Nname == nil {
   287			return "<nil>"
   288		}
   289		return n.Func.Nname.Sym.Name
   290	}
   291	
   292	// Name holds Node fields used only by named nodes (ONAME, OTYPE, OPACK, OLABEL, some OLITERAL).
   293	type Name struct {
   294		Pack      *Node      // real package for import . names
   295		Pkg       *types.Pkg // pkg for OPACK nodes
   296		Defn      *Node      // initializing assignment
   297		Curfn     *Node      // function for local variables
   298		Param     *Param     // additional fields for ONAME, OTYPE
   299		Decldepth int32      // declaration loop depth, increased for every loop or label
   300		Vargen    int32      // unique name for ONAME within a function.  Function outputs are numbered starting at one.
   301		flags     bitset8
   302	}
   303	
   304	const (
   305		nameCaptured = 1 << iota // is the variable captured by a closure
   306		nameReadonly
   307		nameByval     // is the variable captured by value or by reference
   308		nameNeedzero  // if it contains pointers, needs to be zeroed on function entry
   309		nameKeepalive // mark value live across unknown assembly call
   310		nameAutoTemp  // is the variable a temporary (implies no dwarf info. reset if escapes to heap)
   311		nameUsed      // for variable declared and not used error
   312	)
   313	
   314	func (n *Name) Captured() bool  { return n.flags&nameCaptured != 0 }
   315	func (n *Name) Readonly() bool  { return n.flags&nameReadonly != 0 }
   316	func (n *Name) Byval() bool     { return n.flags&nameByval != 0 }
   317	func (n *Name) Needzero() bool  { return n.flags&nameNeedzero != 0 }
   318	func (n *Name) Keepalive() bool { return n.flags&nameKeepalive != 0 }
   319	func (n *Name) AutoTemp() bool  { return n.flags&nameAutoTemp != 0 }
   320	func (n *Name) Used() bool      { return n.flags&nameUsed != 0 }
   321	
   322	func (n *Name) SetCaptured(b bool)  { n.flags.set(nameCaptured, b) }
   323	func (n *Name) SetReadonly(b bool)  { n.flags.set(nameReadonly, b) }
   324	func (n *Name) SetByval(b bool)     { n.flags.set(nameByval, b) }
   325	func (n *Name) SetNeedzero(b bool)  { n.flags.set(nameNeedzero, b) }
   326	func (n *Name) SetKeepalive(b bool) { n.flags.set(nameKeepalive, b) }
   327	func (n *Name) SetAutoTemp(b bool)  { n.flags.set(nameAutoTemp, b) }
   328	func (n *Name) SetUsed(b bool)      { n.flags.set(nameUsed, b) }
   329	
   330	type Param struct {
   331		Ntype    *Node
   332		Heapaddr *Node // temp holding heap address of param
   333	
   334		// ONAME PAUTOHEAP
   335		Stackcopy *Node // the PPARAM/PPARAMOUT on-stack slot (moved func params only)
   336	
   337		// ONAME closure linkage
   338		// Consider:
   339		//
   340		//	func f() {
   341		//		x := 1 // x1
   342		//		func() {
   343		//			use(x) // x2
   344		//			func() {
   345		//				use(x) // x3
   346		//				--- parser is here ---
   347		//			}()
   348		//		}()
   349		//	}
   350		//
   351		// There is an original declaration of x and then a chain of mentions of x
   352		// leading into the current function. Each time x is mentioned in a new closure,
   353		// we create a variable representing x for use in that specific closure,
   354		// since the way you get to x is different in each closure.
   355		//
   356		// Let's number the specific variables as shown in the code:
   357		// x1 is the original x, x2 is when mentioned in the closure,
   358		// and x3 is when mentioned in the closure in the closure.
   359		//
   360		// We keep these linked (assume N > 1):
   361		//
   362		//   - x1.Defn = original declaration statement for x (like most variables)
   363		//   - x1.Innermost = current innermost closure x (in this case x3), or nil for none
   364		//   - x1.IsClosureVar() = false
   365		//
   366		//   - xN.Defn = x1, N > 1
   367		//   - xN.IsClosureVar() = true, N > 1
   368		//   - x2.Outer = nil
   369		//   - xN.Outer = x(N-1), N > 2
   370		//
   371		//
   372		// When we look up x in the symbol table, we always get x1.
   373		// Then we can use x1.Innermost (if not nil) to get the x
   374		// for the innermost known closure function,
   375		// but the first reference in a closure will find either no x1.Innermost
   376		// or an x1.Innermost with .Funcdepth < Funcdepth.
   377		// In that case, a new xN must be created, linked in with:
   378		//
   379		//     xN.Defn = x1
   380		//     xN.Outer = x1.Innermost
   381		//     x1.Innermost = xN
   382		//
   383		// When we finish the function, we'll process its closure variables
   384		// and find xN and pop it off the list using:
   385		//
   386		//     x1 := xN.Defn
   387		//     x1.Innermost = xN.Outer
   388		//
   389		// We leave xN.Innermost set so that we can still get to the original
   390		// variable quickly. Not shown here, but once we're
   391		// done parsing a function and no longer need xN.Outer for the
   392		// lexical x reference links as described above, closurebody
   393		// recomputes xN.Outer as the semantic x reference link tree,
   394		// even filling in x in intermediate closures that might not
   395		// have mentioned it along the way to inner closures that did.
   396		// See closurebody for details.
   397		//
   398		// During the eventual compilation, then, for closure variables we have:
   399		//
   400		//     xN.Defn = original variable
   401		//     xN.Outer = variable captured in next outward scope
   402		//                to make closure where xN appears
   403		//
   404		// Because of the sharding of pieces of the node, x.Defn means x.Name.Defn
   405		// and x.Innermost/Outer means x.Name.Param.Innermost/Outer.
   406		Innermost *Node
   407		Outer     *Node
   408	
   409		// OTYPE
   410		//
   411		// TODO: Should Func pragmas also be stored on the Name?
   412		Pragma syntax.Pragma
   413		Alias  bool // node is alias for Ntype (only used when type-checking ODCLTYPE)
   414	}
   415	
   416	// Functions
   417	//
   418	// A simple function declaration is represented as an ODCLFUNC node f
   419	// and an ONAME node n. They're linked to one another through
   420	// f.Func.Nname == n and n.Name.Defn == f. When functions are
   421	// referenced by name in an expression, the function's ONAME node is
   422	// used directly.
   423	//
   424	// Function names have n.Class() == PFUNC. This distinguishes them
   425	// from variables of function type.
   426	//
   427	// Confusingly, n.Func and f.Func both exist, but commonly point to
   428	// different Funcs. (Exception: an OCALLPART's Func does point to its
   429	// ODCLFUNC's Func.)
   430	//
   431	// A method declaration is represented like functions, except n.Sym
   432	// will be the qualified method name (e.g., "T.m") and
   433	// f.Func.Shortname is the bare method name (e.g., "m").
   434	//
   435	// Method expressions are represented as ONAME/PFUNC nodes like
   436	// function names, but their Left and Right fields still point to the
   437	// type and method, respectively. They can be distinguished from
   438	// normal functions with isMethodExpression. Also, unlike function
   439	// name nodes, method expression nodes exist for each method
   440	// expression. The declaration ONAME can be accessed with
   441	// x.Type.Nname(), where x is the method expression ONAME node.
   442	//
   443	// Method values are represented by ODOTMETH/ODOTINTER when called
   444	// immediately, and OCALLPART otherwise. They are like method
   445	// expressions, except that for ODOTMETH/ODOTINTER the method name is
   446	// stored in Sym instead of Right.
   447	//
   448	// Closures are represented by OCLOSURE node c. They link back and
   449	// forth with the ODCLFUNC via Func.Closure; that is, c.Func.Closure
   450	// == f and f.Func.Closure == c.
   451	//
   452	// Function bodies are stored in f.Nbody, and inline function bodies
   453	// are stored in n.Func.Inl. Pragmas are stored in f.Func.Pragma.
   454	//
   455	// Imported functions skip the ODCLFUNC, so n.Name.Defn is nil. They
   456	// also use Dcl instead of Inldcl.
   457	
   458	// Func holds Node fields used only with function-like nodes.
   459	type Func struct {
   460		Shortname *types.Sym
   461		Enter     Nodes // for example, allocate and initialize memory for escaping parameters
   462		Exit      Nodes
   463		Cvars     Nodes   // closure params
   464		Dcl       []*Node // autodcl for this func/closure
   465	
   466		// Parents records the parent scope of each scope within a
   467		// function. The root scope (0) has no parent, so the i'th
   468		// scope's parent is stored at Parents[i-1].
   469		Parents []ScopeID
   470	
   471		// Marks records scope boundary changes.
   472		Marks []Mark
   473	
   474		// Closgen tracks how many closures have been generated within
   475		// this function. Used by closurename for creating unique
   476		// function names.
   477		Closgen int
   478	
   479		FieldTrack map[*types.Sym]struct{}
   480		DebugInfo  *ssa.FuncDebug
   481		Ntype      *Node // signature
   482		Top        int   // top context (ctxCallee, etc)
   483		Closure    *Node // OCLOSURE <-> ODCLFUNC
   484		Nname      *Node
   485		lsym       *obj.LSym
   486	
   487		Inl *Inline
   488	
   489		Label int32 // largest auto-generated label in this function
   490	
   491		Endlineno src.XPos
   492		WBPos     src.XPos // position of first write barrier; see SetWBPos
   493	
   494		Pragma syntax.Pragma // go:xxx function annotations
   495	
   496		flags bitset16
   497	
   498		// nwbrCalls records the LSyms of functions called by this
   499		// function for go:nowritebarrierrec analysis. Only filled in
   500		// if nowritebarrierrecCheck != nil.
   501		nwbrCalls *[]nowritebarrierrecCallSym
   502	}
   503	
   504	// An Inline holds fields used for function bodies that can be inlined.
   505	type Inline struct {
   506		Cost int32 // heuristic cost of inlining this function
   507	
   508		// Copies of Func.Dcl and Nbody for use during inlining.
   509		Dcl  []*Node
   510		Body []*Node
   511	}
   512	
   513	// A Mark represents a scope boundary.
   514	type Mark struct {
   515		// Pos is the position of the token that marks the scope
   516		// change.
   517		Pos src.XPos
   518	
   519		// Scope identifies the innermost scope to the right of Pos.
   520		Scope ScopeID
   521	}
   522	
   523	// A ScopeID represents a lexical scope within a function.
   524	type ScopeID int32
   525	
   526	const (
   527		funcDupok         = 1 << iota // duplicate definitions ok
   528		funcWrapper                   // is method wrapper
   529		funcNeedctxt                  // function uses context register (has closure variables)
   530		funcReflectMethod             // function calls reflect.Type.Method or MethodByName
   531		funcIsHiddenClosure
   532		funcHasDefer            // contains a defer statement
   533		funcNilCheckDisabled    // disable nil checks when compiling this function
   534		funcInlinabilityChecked // inliner has already determined whether the function is inlinable
   535		funcExportInline        // include inline body in export data
   536		funcInstrumentBody      // add race/msan instrumentation during SSA construction
   537	)
   538	
   539	func (f *Func) Dupok() bool               { return f.flags&funcDupok != 0 }
   540	func (f *Func) Wrapper() bool             { return f.flags&funcWrapper != 0 }
   541	func (f *Func) Needctxt() bool            { return f.flags&funcNeedctxt != 0 }
   542	func (f *Func) ReflectMethod() bool       { return f.flags&funcReflectMethod != 0 }
   543	func (f *Func) IsHiddenClosure() bool     { return f.flags&funcIsHiddenClosure != 0 }
   544	func (f *Func) HasDefer() bool            { return f.flags&funcHasDefer != 0 }
   545	func (f *Func) NilCheckDisabled() bool    { return f.flags&funcNilCheckDisabled != 0 }
   546	func (f *Func) InlinabilityChecked() bool { return f.flags&funcInlinabilityChecked != 0 }
   547	func (f *Func) ExportInline() bool        { return f.flags&funcExportInline != 0 }
   548	func (f *Func) InstrumentBody() bool      { return f.flags&funcInstrumentBody != 0 }
   549	
   550	func (f *Func) SetDupok(b bool)               { f.flags.set(funcDupok, b) }
   551	func (f *Func) SetWrapper(b bool)             { f.flags.set(funcWrapper, b) }
   552	func (f *Func) SetNeedctxt(b bool)            { f.flags.set(funcNeedctxt, b) }
   553	func (f *Func) SetReflectMethod(b bool)       { f.flags.set(funcReflectMethod, b) }
   554	func (f *Func) SetIsHiddenClosure(b bool)     { f.flags.set(funcIsHiddenClosure, b) }
   555	func (f *Func) SetHasDefer(b bool)            { f.flags.set(funcHasDefer, b) }
   556	func (f *Func) SetNilCheckDisabled(b bool)    { f.flags.set(funcNilCheckDisabled, b) }
   557	func (f *Func) SetInlinabilityChecked(b bool) { f.flags.set(funcInlinabilityChecked, b) }
   558	func (f *Func) SetExportInline(b bool)        { f.flags.set(funcExportInline, b) }
   559	func (f *Func) SetInstrumentBody(b bool)      { f.flags.set(funcInstrumentBody, b) }
   560	
   561	func (f *Func) setWBPos(pos src.XPos) {
   562		if Debug_wb != 0 {
   563			Warnl(pos, "write barrier")
   564		}
   565		if !f.WBPos.IsKnown() {
   566			f.WBPos = pos
   567		}
   568	}
   569	
   570	//go:generate stringer -type=Op -trimprefix=O
   571	
   572	type Op uint8
   573	
   574	// Node ops.
   575	const (
   576		OXXX Op = iota
   577	
   578		// names
   579		ONAME    // var or func name
   580		ONONAME  // unnamed arg or return value: f(int, string) (int, error) { etc }
   581		OTYPE    // type name
   582		OPACK    // import
   583		OLITERAL // literal
   584	
   585		// expressions
   586		OADD          // Left + Right
   587		OSUB          // Left - Right
   588		OOR           // Left | Right
   589		OXOR          // Left ^ Right
   590		OADDSTR       // +{List} (string addition, list elements are strings)
   591		OADDR         // &Left
   592		OANDAND       // Left && Right
   593		OAPPEND       // append(List); after walk, Left may contain elem type descriptor
   594		OBYTES2STR    // Type(Left) (Type is string, Left is a []byte)
   595		OBYTES2STRTMP // Type(Left) (Type is string, Left is a []byte, ephemeral)
   596		ORUNES2STR    // Type(Left) (Type is string, Left is a []rune)
   597		OSTR2BYTES    // Type(Left) (Type is []byte, Left is a string)
   598		OSTR2BYTESTMP // Type(Left) (Type is []byte, Left is a string, ephemeral)
   599		OSTR2RUNES    // Type(Left) (Type is []rune, Left is a string)
   600		OAS           // Left = Right or (if Colas=true) Left := Right
   601		OAS2          // List = Rlist (x, y, z = a, b, c)
   602		OAS2DOTTYPE   // List = Rlist (x, ok = I.(int))
   603		OAS2FUNC      // List = Rlist (x, y = f())
   604		OAS2MAPR      // List = Rlist (x, ok = m["foo"])
   605		OAS2RECV      // List = Rlist (x, ok = <-c)
   606		OASOP         // Left Etype= Right (x += y)
   607		OCALL         // Left(List) (function call, method call or type conversion)
   608	
   609		// OCALLFUNC, OCALLMETH, and OCALLINTER have the same structure.
   610		// Prior to walk, they are: Left(List), where List is all regular arguments.
   611		// If present, Right is an ODDDARG that holds the
   612		// generated slice used in a call to a variadic function.
   613		// After walk, List is a series of assignments to temporaries,
   614		// and Rlist is an updated set of arguments, including any ODDDARG slice.
   615		// TODO(josharian/khr): Use Ninit instead of List for the assignments to temporaries. See CL 114797.
   616		OCALLFUNC  // Left(List/Rlist) (function call f(args))
   617		OCALLMETH  // Left(List/Rlist) (direct method call x.Method(args))
   618		OCALLINTER // Left(List/Rlist) (interface method call x.Method(args))
   619		OCALLPART  // Left.Right (method expression x.Method, not called)
   620		OCAP       // cap(Left)
   621		OCLOSE     // close(Left)
   622		OCLOSURE   // func Type { Body } (func literal)
   623		OCOMPLIT   // Right{List} (composite literal, not yet lowered to specific form)
   624		OMAPLIT    // Type{List} (composite literal, Type is map)
   625		OSTRUCTLIT // Type{List} (composite literal, Type is struct)
   626		OARRAYLIT  // Type{List} (composite literal, Type is array)
   627		OSLICELIT  // Type{List} (composite literal, Type is slice) Right.Int64() = slice length.
   628		OPTRLIT    // &Left (left is composite literal)
   629		OCONV      // Type(Left) (type conversion)
   630		OCONVIFACE // Type(Left) (type conversion, to interface)
   631		OCONVNOP   // Type(Left) (type conversion, no effect)
   632		OCOPY      // copy(Left, Right)
   633		ODCL       // var Left (declares Left of type Left.Type)
   634	
   635		// Used during parsing but don't last.
   636		ODCLFUNC  // func f() or func (r) f()
   637		ODCLFIELD // struct field, interface field, or func/method argument/return value.
   638		ODCLCONST // const pi = 3.14
   639		ODCLTYPE  // type Int int or type Int = int
   640	
   641		ODELETE      // delete(Left, Right)
   642		ODOT         // Left.Sym (Left is of struct type)
   643		ODOTPTR      // Left.Sym (Left is of pointer to struct type)
   644		ODOTMETH     // Left.Sym (Left is non-interface, Right is method name)
   645		ODOTINTER    // Left.Sym (Left is interface, Right is method name)
   646		OXDOT        // Left.Sym (before rewrite to one of the preceding)
   647		ODOTTYPE     // Left.Right or Left.Type (.Right during parsing, .Type once resolved); after walk, .Right contains address of interface type descriptor and .Right.Right contains address of concrete type descriptor
   648		ODOTTYPE2    // Left.Right or Left.Type (.Right during parsing, .Type once resolved; on rhs of OAS2DOTTYPE); after walk, .Right contains address of interface type descriptor
   649		OEQ          // Left == Right
   650		ONE          // Left != Right
   651		OLT          // Left < Right
   652		OLE          // Left <= Right
   653		OGE          // Left >= Right
   654		OGT          // Left > Right
   655		ODEREF       // *Left
   656		OINDEX       // Left[Right] (index of array or slice)
   657		OINDEXMAP    // Left[Right] (index of map)
   658		OKEY         // Left:Right (key:value in struct/array/map literal)
   659		OSTRUCTKEY   // Sym:Left (key:value in struct literal, after type checking)
   660		OLEN         // len(Left)
   661		OMAKE        // make(List) (before type checking converts to one of the following)
   662		OMAKECHAN    // make(Type, Left) (type is chan)
   663		OMAKEMAP     // make(Type, Left) (type is map)
   664		OMAKESLICE   // make(Type, Left, Right) (type is slice)
   665		OMUL         // Left * Right
   666		ODIV         // Left / Right
   667		OMOD         // Left % Right
   668		OLSH         // Left << Right
   669		ORSH         // Left >> Right
   670		OAND         // Left & Right
   671		OANDNOT      // Left &^ Right
   672		ONEW         // new(Left); corresponds to calls to new in source code
   673		ONEWOBJ      // runtime.newobject(n.Type); introduced by walk; Left is type descriptor
   674		ONOT         // !Left
   675		OBITNOT      // ^Left
   676		OPLUS        // +Left
   677		ONEG         // -Left
   678		OOROR        // Left || Right
   679		OPANIC       // panic(Left)
   680		OPRINT       // print(List)
   681		OPRINTN      // println(List)
   682		OPAREN       // (Left)
   683		OSEND        // Left <- Right
   684		OSLICE       // Left[List[0] : List[1]] (Left is untypechecked or slice)
   685		OSLICEARR    // Left[List[0] : List[1]] (Left is array)
   686		OSLICESTR    // Left[List[0] : List[1]] (Left is string)
   687		OSLICE3      // Left[List[0] : List[1] : List[2]] (Left is untypedchecked or slice)
   688		OSLICE3ARR   // Left[List[0] : List[1] : List[2]] (Left is array)
   689		OSLICEHEADER // sliceheader{Left, List[0], List[1]} (Left is unsafe.Pointer, List[0] is length, List[1] is capacity)
   690		ORECOVER     // recover()
   691		ORECV        // <-Left
   692		ORUNESTR     // Type(Left) (Type is string, Left is rune)
   693		OSELRECV     // Left = <-Right.Left: (appears as .Left of OCASE; Right.Op == ORECV)
   694		OSELRECV2    // List = <-Right.Left: (apperas as .Left of OCASE; count(List) == 2, Right.Op == ORECV)
   695		OIOTA        // iota
   696		OREAL        // real(Left)
   697		OIMAG        // imag(Left)
   698		OCOMPLEX     // complex(Left, Right) or complex(List[0]) where List[0] is a 2-result function call
   699		OALIGNOF     // unsafe.Alignof(Left)
   700		OOFFSETOF    // unsafe.Offsetof(Left)
   701		OSIZEOF      // unsafe.Sizeof(Left)
   702	
   703		// statements
   704		OBLOCK    // { List } (block of code)
   705		OBREAK    // break [Sym]
   706		OCASE     // case Left or List[0]..List[1]: Nbody (select case after processing; Left==nil and List==nil means default)
   707		OXCASE    // case List: Nbody (select case before processing; List==nil means default)
   708		OCONTINUE // continue [Sym]
   709		ODEFER    // defer Left (Left must be call)
   710		OEMPTY    // no-op (empty statement)
   711		OFALL     // fallthrough
   712		OFOR      // for Ninit; Left; Right { Nbody }
   713		// OFORUNTIL is like OFOR, but the test (Left) is applied after the body:
   714		// 	Ninit
   715		// 	top: { Nbody }   // Execute the body at least once
   716		// 	cont: Right
   717		// 	if Left {        // And then test the loop condition
   718		// 		List     // Before looping to top, execute List
   719		// 		goto top
   720		// 	}
   721		// OFORUNTIL is created by walk. There's no way to write this in Go code.
   722		OFORUNTIL
   723		OGOTO   // goto Sym
   724		OIF     // if Ninit; Left { Nbody } else { Rlist }
   725		OLABEL  // Sym:
   726		OGO     // go Left (Left must be call)
   727		ORANGE  // for List = range Right { Nbody }
   728		ORETURN // return List
   729		OSELECT // select { List } (List is list of OXCASE or OCASE)
   730		OSWITCH // switch Ninit; Left { List } (List is a list of OXCASE or OCASE)
   731		OTYPESW // Left = Right.(type) (appears as .Left of OSWITCH)
   732	
   733		// types
   734		OTCHAN   // chan int
   735		OTMAP    // map[string]int
   736		OTSTRUCT // struct{}
   737		OTINTER  // interface{}
   738		OTFUNC   // func()
   739		OTARRAY  // []int, [8]int, [N]int or [...]int
   740	
   741		// misc
   742		ODDD        // func f(args ...int) or f(l...) or var a = [...]int{0, 1, 2}.
   743		ODDDARG     // func f(args ...int), introduced by escape analysis.
   744		OINLCALL    // intermediary representation of an inlined call.
   745		OEFACE      // itable and data words of an empty-interface value.
   746		OITAB       // itable word of an interface value.
   747		OIDATA      // data word of an interface value in Left
   748		OSPTR       // base pointer of a slice or string.
   749		OCLOSUREVAR // variable reference at beginning of closure function
   750		OCFUNC      // reference to c function pointer (not go func value)
   751		OCHECKNIL   // emit code to ensure pointer/interface not nil
   752		OVARDEF     // variable is about to be fully initialized
   753		OVARKILL    // variable is dead
   754		OVARLIVE    // variable is alive
   755		ORESULT     // result of a function call; Xoffset is stack offset
   756		OINLMARK    // start of an inlined body, with file/line of caller. Xoffset is an index into the inline tree.
   757	
   758		// arch-specific opcodes
   759		ORETJMP // return to other function
   760		OGETG   // runtime.getg() (read g pointer)
   761	
   762		OEND
   763	)
   764	
   765	// Nodes is a pointer to a slice of *Node.
   766	// For fields that are not used in most nodes, this is used instead of
   767	// a slice to save space.
   768	type Nodes struct{ slice *[]*Node }
   769	
   770	// asNodes returns a slice of *Node as a Nodes value.
   771	func asNodes(s []*Node) Nodes {
   772		return Nodes{&s}
   773	}
   774	
   775	// Slice returns the entries in Nodes as a slice.
   776	// Changes to the slice entries (as in s[i] = n) will be reflected in
   777	// the Nodes.
   778	func (n Nodes) Slice() []*Node {
   779		if n.slice == nil {
   780			return nil
   781		}
   782		return *n.slice
   783	}
   784	
   785	// Len returns the number of entries in Nodes.
   786	func (n Nodes) Len() int {
   787		if n.slice == nil {
   788			return 0
   789		}
   790		return len(*n.slice)
   791	}
   792	
   793	// Index returns the i'th element of Nodes.
   794	// It panics if n does not have at least i+1 elements.
   795	func (n Nodes) Index(i int) *Node {
   796		return (*n.slice)[i]
   797	}
   798	
   799	// First returns the first element of Nodes (same as n.Index(0)).
   800	// It panics if n has no elements.
   801	func (n Nodes) First() *Node {
   802		return (*n.slice)[0]
   803	}
   804	
   805	// Second returns the second element of Nodes (same as n.Index(1)).
   806	// It panics if n has fewer than two elements.
   807	func (n Nodes) Second() *Node {
   808		return (*n.slice)[1]
   809	}
   810	
   811	// Set sets n to a slice.
   812	// This takes ownership of the slice.
   813	func (n *Nodes) Set(s []*Node) {
   814		if len(s) == 0 {
   815			n.slice = nil
   816		} else {
   817			// Copy s and take address of t rather than s to avoid
   818			// allocation in the case where len(s) == 0 (which is
   819			// over 3x more common, dynamically, for make.bash).
   820			t := s
   821			n.slice = &t
   822		}
   823	}
   824	
   825	// Set1 sets n to a slice containing a single node.
   826	func (n *Nodes) Set1(n1 *Node) {
   827		n.slice = &[]*Node{n1}
   828	}
   829	
   830	// Set2 sets n to a slice containing two nodes.
   831	func (n *Nodes) Set2(n1, n2 *Node) {
   832		n.slice = &[]*Node{n1, n2}
   833	}
   834	
   835	// Set3 sets n to a slice containing three nodes.
   836	func (n *Nodes) Set3(n1, n2, n3 *Node) {
   837		n.slice = &[]*Node{n1, n2, n3}
   838	}
   839	
   840	// MoveNodes sets n to the contents of n2, then clears n2.
   841	func (n *Nodes) MoveNodes(n2 *Nodes) {
   842		n.slice = n2.slice
   843		n2.slice = nil
   844	}
   845	
   846	// SetIndex sets the i'th element of Nodes to node.
   847	// It panics if n does not have at least i+1 elements.
   848	func (n Nodes) SetIndex(i int, node *Node) {
   849		(*n.slice)[i] = node
   850	}
   851	
   852	// SetFirst sets the first element of Nodes to node.
   853	// It panics if n does not have at least one elements.
   854	func (n Nodes) SetFirst(node *Node) {
   855		(*n.slice)[0] = node
   856	}
   857	
   858	// SetSecond sets the second element of Nodes to node.
   859	// It panics if n does not have at least two elements.
   860	func (n Nodes) SetSecond(node *Node) {
   861		(*n.slice)[1] = node
   862	}
   863	
   864	// Addr returns the address of the i'th element of Nodes.
   865	// It panics if n does not have at least i+1 elements.
   866	func (n Nodes) Addr(i int) **Node {
   867		return &(*n.slice)[i]
   868	}
   869	
   870	// Append appends entries to Nodes.
   871	func (n *Nodes) Append(a ...*Node) {
   872		if len(a) == 0 {
   873			return
   874		}
   875		if n.slice == nil {
   876			s := make([]*Node, len(a))
   877			copy(s, a)
   878			n.slice = &s
   879			return
   880		}
   881		*n.slice = append(*n.slice, a...)
   882	}
   883	
   884	// Prepend prepends entries to Nodes.
   885	// If a slice is passed in, this will take ownership of it.
   886	func (n *Nodes) Prepend(a ...*Node) {
   887		if len(a) == 0 {
   888			return
   889		}
   890		if n.slice == nil {
   891			n.slice = &a
   892		} else {
   893			*n.slice = append(a, *n.slice...)
   894		}
   895	}
   896	
   897	// AppendNodes appends the contents of *n2 to n, then clears n2.
   898	func (n *Nodes) AppendNodes(n2 *Nodes) {
   899		switch {
   900		case n2.slice == nil:
   901		case n.slice == nil:
   902			n.slice = n2.slice
   903		default:
   904			*n.slice = append(*n.slice, *n2.slice...)
   905		}
   906		n2.slice = nil
   907	}
   908	
   909	// inspect invokes f on each node in an AST in depth-first order.
   910	// If f(n) returns false, inspect skips visiting n's children.
   911	func inspect(n *Node, f func(*Node) bool) {
   912		if n == nil || !f(n) {
   913			return
   914		}
   915		inspectList(n.Ninit, f)
   916		inspect(n.Left, f)
   917		inspect(n.Right, f)
   918		inspectList(n.List, f)
   919		inspectList(n.Nbody, f)
   920		inspectList(n.Rlist, f)
   921	}
   922	
   923	func inspectList(l Nodes, f func(*Node) bool) {
   924		for _, n := range l.Slice() {
   925			inspect(n, f)
   926		}
   927	}
   928	
   929	// nodeQueue is a FIFO queue of *Node. The zero value of nodeQueue is
   930	// a ready-to-use empty queue.
   931	type nodeQueue struct {
   932		ring       []*Node
   933		head, tail int
   934	}
   935	
   936	// empty reports whether q contains no Nodes.
   937	func (q *nodeQueue) empty() bool {
   938		return q.head == q.tail
   939	}
   940	
   941	// pushRight appends n to the right of the queue.
   942	func (q *nodeQueue) pushRight(n *Node) {
   943		if len(q.ring) == 0 {
   944			q.ring = make([]*Node, 16)
   945		} else if q.head+len(q.ring) == q.tail {
   946			// Grow the ring.
   947			nring := make([]*Node, len(q.ring)*2)
   948			// Copy the old elements.
   949			part := q.ring[q.head%len(q.ring):]
   950			if q.tail-q.head <= len(part) {
   951				part = part[:q.tail-q.head]
   952				copy(nring, part)
   953			} else {
   954				pos := copy(nring, part)
   955				copy(nring[pos:], q.ring[:q.tail%len(q.ring)])
   956			}
   957			q.ring, q.head, q.tail = nring, 0, q.tail-q.head
   958		}
   959	
   960		q.ring[q.tail%len(q.ring)] = n
   961		q.tail++
   962	}
   963	
   964	// popLeft pops a node from the left of the queue. It panics if q is
   965	// empty.
   966	func (q *nodeQueue) popLeft() *Node {
   967		if q.empty() {
   968			panic("dequeue empty")
   969		}
   970		n := q.ring[q.head%len(q.ring)]
   971		q.head++
   972		return n
   973	}
   974	
   975	// NodeSet is a set of Nodes.
   976	type NodeSet map[*Node]struct{}
   977	
   978	// Has reports whether s contains n.
   979	func (s NodeSet) Has(n *Node) bool {
   980		_, isPresent := s[n]
   981		return isPresent
   982	}
   983	
   984	// Add adds n to s.
   985	func (s *NodeSet) Add(n *Node) {
   986		if *s == nil {
   987			*s = make(map[*Node]struct{})
   988		}
   989		(*s)[n] = struct{}{}
   990	}
   991	
   992	// Sorted returns s sorted according to less.
   993	func (s NodeSet) Sorted(less func(*Node, *Node) bool) []*Node {
   994		var res []*Node
   995		for n := range s {
   996			res = append(res, n)
   997		}
   998		sort.Slice(res, func(i, j int) bool { return less(res[i], res[j]) })
   999		return res
  1000	}
  1001	

View as plain text