...

Source file src/net/ip.go

     1	// Copyright 2009 The Go Authors. All rights reserved.
     2	// Use of this source code is governed by a BSD-style
     3	// license that can be found in the LICENSE file.
     4	
     5	// IP address manipulations
     6	//
     7	// IPv4 addresses are 4 bytes; IPv6 addresses are 16 bytes.
     8	// An IPv4 address can be converted to an IPv6 address by
     9	// adding a canonical prefix (10 zeros, 2 0xFFs).
    10	// This library accepts either size of byte slice but always
    11	// returns 16-byte addresses.
    12	
    13	package net
    14	
    15	import "internal/bytealg"
    16	
    17	// IP address lengths (bytes).
    18	const (
    19		IPv4len = 4
    20		IPv6len = 16
    21	)
    22	
    23	// An IP is a single IP address, a slice of bytes.
    24	// Functions in this package accept either 4-byte (IPv4)
    25	// or 16-byte (IPv6) slices as input.
    26	//
    27	// Note that in this documentation, referring to an
    28	// IP address as an IPv4 address or an IPv6 address
    29	// is a semantic property of the address, not just the
    30	// length of the byte slice: a 16-byte slice can still
    31	// be an IPv4 address.
    32	type IP []byte
    33	
    34	// An IP mask is an IP address.
    35	type IPMask []byte
    36	
    37	// An IPNet represents an IP network.
    38	type IPNet struct {
    39		IP   IP     // network number
    40		Mask IPMask // network mask
    41	}
    42	
    43	// IPv4 returns the IP address (in 16-byte form) of the
    44	// IPv4 address a.b.c.d.
    45	func IPv4(a, b, c, d byte) IP {
    46		p := make(IP, IPv6len)
    47		copy(p, v4InV6Prefix)
    48		p[12] = a
    49		p[13] = b
    50		p[14] = c
    51		p[15] = d
    52		return p
    53	}
    54	
    55	var v4InV6Prefix = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff}
    56	
    57	// IPv4Mask returns the IP mask (in 4-byte form) of the
    58	// IPv4 mask a.b.c.d.
    59	func IPv4Mask(a, b, c, d byte) IPMask {
    60		p := make(IPMask, IPv4len)
    61		p[0] = a
    62		p[1] = b
    63		p[2] = c
    64		p[3] = d
    65		return p
    66	}
    67	
    68	// CIDRMask returns an IPMask consisting of `ones' 1 bits
    69	// followed by 0s up to a total length of `bits' bits.
    70	// For a mask of this form, CIDRMask is the inverse of IPMask.Size.
    71	func CIDRMask(ones, bits int) IPMask {
    72		if bits != 8*IPv4len && bits != 8*IPv6len {
    73			return nil
    74		}
    75		if ones < 0 || ones > bits {
    76			return nil
    77		}
    78		l := bits / 8
    79		m := make(IPMask, l)
    80		n := uint(ones)
    81		for i := 0; i < l; i++ {
    82			if n >= 8 {
    83				m[i] = 0xff
    84				n -= 8
    85				continue
    86			}
    87			m[i] = ^byte(0xff >> n)
    88			n = 0
    89		}
    90		return m
    91	}
    92	
    93	// Well-known IPv4 addresses
    94	var (
    95		IPv4bcast     = IPv4(255, 255, 255, 255) // limited broadcast
    96		IPv4allsys    = IPv4(224, 0, 0, 1)       // all systems
    97		IPv4allrouter = IPv4(224, 0, 0, 2)       // all routers
    98		IPv4zero      = IPv4(0, 0, 0, 0)         // all zeros
    99	)
   100	
   101	// Well-known IPv6 addresses
   102	var (
   103		IPv6zero                   = IP{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
   104		IPv6unspecified            = IP{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
   105		IPv6loopback               = IP{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}
   106		IPv6interfacelocalallnodes = IP{0xff, 0x01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x01}
   107		IPv6linklocalallnodes      = IP{0xff, 0x02, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x01}
   108		IPv6linklocalallrouters    = IP{0xff, 0x02, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x02}
   109	)
   110	
   111	// IsUnspecified reports whether ip is an unspecified address, either
   112	// the IPv4 address "0.0.0.0" or the IPv6 address "::".
   113	func (ip IP) IsUnspecified() bool {
   114		return ip.Equal(IPv4zero) || ip.Equal(IPv6unspecified)
   115	}
   116	
   117	// IsLoopback reports whether ip is a loopback address.
   118	func (ip IP) IsLoopback() bool {
   119		if ip4 := ip.To4(); ip4 != nil {
   120			return ip4[0] == 127
   121		}
   122		return ip.Equal(IPv6loopback)
   123	}
   124	
   125	// IsMulticast reports whether ip is a multicast address.
   126	func (ip IP) IsMulticast() bool {
   127		if ip4 := ip.To4(); ip4 != nil {
   128			return ip4[0]&0xf0 == 0xe0
   129		}
   130		return len(ip) == IPv6len && ip[0] == 0xff
   131	}
   132	
   133	// IsInterfaceLocalMulticast reports whether ip is
   134	// an interface-local multicast address.
   135	func (ip IP) IsInterfaceLocalMulticast() bool {
   136		return len(ip) == IPv6len && ip[0] == 0xff && ip[1]&0x0f == 0x01
   137	}
   138	
   139	// IsLinkLocalMulticast reports whether ip is a link-local
   140	// multicast address.
   141	func (ip IP) IsLinkLocalMulticast() bool {
   142		if ip4 := ip.To4(); ip4 != nil {
   143			return ip4[0] == 224 && ip4[1] == 0 && ip4[2] == 0
   144		}
   145		return len(ip) == IPv6len && ip[0] == 0xff && ip[1]&0x0f == 0x02
   146	}
   147	
   148	// IsLinkLocalUnicast reports whether ip is a link-local
   149	// unicast address.
   150	func (ip IP) IsLinkLocalUnicast() bool {
   151		if ip4 := ip.To4(); ip4 != nil {
   152			return ip4[0] == 169 && ip4[1] == 254
   153		}
   154		return len(ip) == IPv6len && ip[0] == 0xfe && ip[1]&0xc0 == 0x80
   155	}
   156	
   157	// IsGlobalUnicast reports whether ip is a global unicast
   158	// address.
   159	//
   160	// The identification of global unicast addresses uses address type
   161	// identification as defined in RFC 1122, RFC 4632 and RFC 4291 with
   162	// the exception of IPv4 directed broadcast addresses.
   163	// It returns true even if ip is in IPv4 private address space or
   164	// local IPv6 unicast address space.
   165	func (ip IP) IsGlobalUnicast() bool {
   166		return (len(ip) == IPv4len || len(ip) == IPv6len) &&
   167			!ip.Equal(IPv4bcast) &&
   168			!ip.IsUnspecified() &&
   169			!ip.IsLoopback() &&
   170			!ip.IsMulticast() &&
   171			!ip.IsLinkLocalUnicast()
   172	}
   173	
   174	// Is p all zeros?
   175	func isZeros(p IP) bool {
   176		for i := 0; i < len(p); i++ {
   177			if p[i] != 0 {
   178				return false
   179			}
   180		}
   181		return true
   182	}
   183	
   184	// To4 converts the IPv4 address ip to a 4-byte representation.
   185	// If ip is not an IPv4 address, To4 returns nil.
   186	func (ip IP) To4() IP {
   187		if len(ip) == IPv4len {
   188			return ip
   189		}
   190		if len(ip) == IPv6len &&
   191			isZeros(ip[0:10]) &&
   192			ip[10] == 0xff &&
   193			ip[11] == 0xff {
   194			return ip[12:16]
   195		}
   196		return nil
   197	}
   198	
   199	// To16 converts the IP address ip to a 16-byte representation.
   200	// If ip is not an IP address (it is the wrong length), To16 returns nil.
   201	func (ip IP) To16() IP {
   202		if len(ip) == IPv4len {
   203			return IPv4(ip[0], ip[1], ip[2], ip[3])
   204		}
   205		if len(ip) == IPv6len {
   206			return ip
   207		}
   208		return nil
   209	}
   210	
   211	// Default route masks for IPv4.
   212	var (
   213		classAMask = IPv4Mask(0xff, 0, 0, 0)
   214		classBMask = IPv4Mask(0xff, 0xff, 0, 0)
   215		classCMask = IPv4Mask(0xff, 0xff, 0xff, 0)
   216	)
   217	
   218	// DefaultMask returns the default IP mask for the IP address ip.
   219	// Only IPv4 addresses have default masks; DefaultMask returns
   220	// nil if ip is not a valid IPv4 address.
   221	func (ip IP) DefaultMask() IPMask {
   222		if ip = ip.To4(); ip == nil {
   223			return nil
   224		}
   225		switch {
   226		case ip[0] < 0x80:
   227			return classAMask
   228		case ip[0] < 0xC0:
   229			return classBMask
   230		default:
   231			return classCMask
   232		}
   233	}
   234	
   235	func allFF(b []byte) bool {
   236		for _, c := range b {
   237			if c != 0xff {
   238				return false
   239			}
   240		}
   241		return true
   242	}
   243	
   244	// Mask returns the result of masking the IP address ip with mask.
   245	func (ip IP) Mask(mask IPMask) IP {
   246		if len(mask) == IPv6len && len(ip) == IPv4len && allFF(mask[:12]) {
   247			mask = mask[12:]
   248		}
   249		if len(mask) == IPv4len && len(ip) == IPv6len && bytealg.Equal(ip[:12], v4InV6Prefix) {
   250			ip = ip[12:]
   251		}
   252		n := len(ip)
   253		if n != len(mask) {
   254			return nil
   255		}
   256		out := make(IP, n)
   257		for i := 0; i < n; i++ {
   258			out[i] = ip[i] & mask[i]
   259		}
   260		return out
   261	}
   262	
   263	// ubtoa encodes the string form of the integer v to dst[start:] and
   264	// returns the number of bytes written to dst. The caller must ensure
   265	// that dst has sufficient length.
   266	func ubtoa(dst []byte, start int, v byte) int {
   267		if v < 10 {
   268			dst[start] = v + '0'
   269			return 1
   270		} else if v < 100 {
   271			dst[start+1] = v%10 + '0'
   272			dst[start] = v/10 + '0'
   273			return 2
   274		}
   275	
   276		dst[start+2] = v%10 + '0'
   277		dst[start+1] = (v/10)%10 + '0'
   278		dst[start] = v/100 + '0'
   279		return 3
   280	}
   281	
   282	// String returns the string form of the IP address ip.
   283	// It returns one of 4 forms:
   284	//   - "<nil>", if ip has length 0
   285	//   - dotted decimal ("192.0.2.1"), if ip is an IPv4 or IP4-mapped IPv6 address
   286	//   - IPv6 ("2001:db8::1"), if ip is a valid IPv6 address
   287	//   - the hexadecimal form of ip, without punctuation, if no other cases apply
   288	func (ip IP) String() string {
   289		p := ip
   290	
   291		if len(ip) == 0 {
   292			return "<nil>"
   293		}
   294	
   295		// If IPv4, use dotted notation.
   296		if p4 := p.To4(); len(p4) == IPv4len {
   297			const maxIPv4StringLen = len("255.255.255.255")
   298			b := make([]byte, maxIPv4StringLen)
   299	
   300			n := ubtoa(b, 0, p4[0])
   301			b[n] = '.'
   302			n++
   303	
   304			n += ubtoa(b, n, p4[1])
   305			b[n] = '.'
   306			n++
   307	
   308			n += ubtoa(b, n, p4[2])
   309			b[n] = '.'
   310			n++
   311	
   312			n += ubtoa(b, n, p4[3])
   313			return string(b[:n])
   314		}
   315		if len(p) != IPv6len {
   316			return "?" + hexString(ip)
   317		}
   318	
   319		// Find longest run of zeros.
   320		e0 := -1
   321		e1 := -1
   322		for i := 0; i < IPv6len; i += 2 {
   323			j := i
   324			for j < IPv6len && p[j] == 0 && p[j+1] == 0 {
   325				j += 2
   326			}
   327			if j > i && j-i > e1-e0 {
   328				e0 = i
   329				e1 = j
   330				i = j
   331			}
   332		}
   333		// The symbol "::" MUST NOT be used to shorten just one 16 bit 0 field.
   334		if e1-e0 <= 2 {
   335			e0 = -1
   336			e1 = -1
   337		}
   338	
   339		const maxLen = len("ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff")
   340		b := make([]byte, 0, maxLen)
   341	
   342		// Print with possible :: in place of run of zeros
   343		for i := 0; i < IPv6len; i += 2 {
   344			if i == e0 {
   345				b = append(b, ':', ':')
   346				i = e1
   347				if i >= IPv6len {
   348					break
   349				}
   350			} else if i > 0 {
   351				b = append(b, ':')
   352			}
   353			b = appendHex(b, (uint32(p[i])<<8)|uint32(p[i+1]))
   354		}
   355		return string(b)
   356	}
   357	
   358	func hexString(b []byte) string {
   359		s := make([]byte, len(b)*2)
   360		for i, tn := range b {
   361			s[i*2], s[i*2+1] = hexDigit[tn>>4], hexDigit[tn&0xf]
   362		}
   363		return string(s)
   364	}
   365	
   366	// ipEmptyString is like ip.String except that it returns
   367	// an empty string when ip is unset.
   368	func ipEmptyString(ip IP) string {
   369		if len(ip) == 0 {
   370			return ""
   371		}
   372		return ip.String()
   373	}
   374	
   375	// MarshalText implements the encoding.TextMarshaler interface.
   376	// The encoding is the same as returned by String, with one exception:
   377	// When len(ip) is zero, it returns an empty slice.
   378	func (ip IP) MarshalText() ([]byte, error) {
   379		if len(ip) == 0 {
   380			return []byte(""), nil
   381		}
   382		if len(ip) != IPv4len && len(ip) != IPv6len {
   383			return nil, &AddrError{Err: "invalid IP address", Addr: hexString(ip)}
   384		}
   385		return []byte(ip.String()), nil
   386	}
   387	
   388	// UnmarshalText implements the encoding.TextUnmarshaler interface.
   389	// The IP address is expected in a form accepted by ParseIP.
   390	func (ip *IP) UnmarshalText(text []byte) error {
   391		if len(text) == 0 {
   392			*ip = nil
   393			return nil
   394		}
   395		s := string(text)
   396		x := ParseIP(s)
   397		if x == nil {
   398			return &ParseError{Type: "IP address", Text: s}
   399		}
   400		*ip = x
   401		return nil
   402	}
   403	
   404	// Equal reports whether ip and x are the same IP address.
   405	// An IPv4 address and that same address in IPv6 form are
   406	// considered to be equal.
   407	func (ip IP) Equal(x IP) bool {
   408		if len(ip) == len(x) {
   409			return bytealg.Equal(ip, x)
   410		}
   411		if len(ip) == IPv4len && len(x) == IPv6len {
   412			return bytealg.Equal(x[0:12], v4InV6Prefix) && bytealg.Equal(ip, x[12:])
   413		}
   414		if len(ip) == IPv6len && len(x) == IPv4len {
   415			return bytealg.Equal(ip[0:12], v4InV6Prefix) && bytealg.Equal(ip[12:], x)
   416		}
   417		return false
   418	}
   419	
   420	func (ip IP) matchAddrFamily(x IP) bool {
   421		return ip.To4() != nil && x.To4() != nil || ip.To16() != nil && ip.To4() == nil && x.To16() != nil && x.To4() == nil
   422	}
   423	
   424	// If mask is a sequence of 1 bits followed by 0 bits,
   425	// return the number of 1 bits.
   426	func simpleMaskLength(mask IPMask) int {
   427		var n int
   428		for i, v := range mask {
   429			if v == 0xff {
   430				n += 8
   431				continue
   432			}
   433			// found non-ff byte
   434			// count 1 bits
   435			for v&0x80 != 0 {
   436				n++
   437				v <<= 1
   438			}
   439			// rest must be 0 bits
   440			if v != 0 {
   441				return -1
   442			}
   443			for i++; i < len(mask); i++ {
   444				if mask[i] != 0 {
   445					return -1
   446				}
   447			}
   448			break
   449		}
   450		return n
   451	}
   452	
   453	// Size returns the number of leading ones and total bits in the mask.
   454	// If the mask is not in the canonical form--ones followed by zeros--then
   455	// Size returns 0, 0.
   456	func (m IPMask) Size() (ones, bits int) {
   457		ones, bits = simpleMaskLength(m), len(m)*8
   458		if ones == -1 {
   459			return 0, 0
   460		}
   461		return
   462	}
   463	
   464	// String returns the hexadecimal form of m, with no punctuation.
   465	func (m IPMask) String() string {
   466		if len(m) == 0 {
   467			return "<nil>"
   468		}
   469		return hexString(m)
   470	}
   471	
   472	func networkNumberAndMask(n *IPNet) (ip IP, m IPMask) {
   473		if ip = n.IP.To4(); ip == nil {
   474			ip = n.IP
   475			if len(ip) != IPv6len {
   476				return nil, nil
   477			}
   478		}
   479		m = n.Mask
   480		switch len(m) {
   481		case IPv4len:
   482			if len(ip) != IPv4len {
   483				return nil, nil
   484			}
   485		case IPv6len:
   486			if len(ip) == IPv4len {
   487				m = m[12:]
   488			}
   489		default:
   490			return nil, nil
   491		}
   492		return
   493	}
   494	
   495	// Contains reports whether the network includes ip.
   496	func (n *IPNet) Contains(ip IP) bool {
   497		nn, m := networkNumberAndMask(n)
   498		if x := ip.To4(); x != nil {
   499			ip = x
   500		}
   501		l := len(ip)
   502		if l != len(nn) {
   503			return false
   504		}
   505		for i := 0; i < l; i++ {
   506			if nn[i]&m[i] != ip[i]&m[i] {
   507				return false
   508			}
   509		}
   510		return true
   511	}
   512	
   513	// Network returns the address's network name, "ip+net".
   514	func (n *IPNet) Network() string { return "ip+net" }
   515	
   516	// String returns the CIDR notation of n like "192.0.2.0/24"
   517	// or "2001:db8::/48" as defined in RFC 4632 and RFC 4291.
   518	// If the mask is not in the canonical form, it returns the
   519	// string which consists of an IP address, followed by a slash
   520	// character and a mask expressed as hexadecimal form with no
   521	// punctuation like "198.51.100.0/c000ff00".
   522	func (n *IPNet) String() string {
   523		nn, m := networkNumberAndMask(n)
   524		if nn == nil || m == nil {
   525			return "<nil>"
   526		}
   527		l := simpleMaskLength(m)
   528		if l == -1 {
   529			return nn.String() + "/" + m.String()
   530		}
   531		return nn.String() + "/" + uitoa(uint(l))
   532	}
   533	
   534	// Parse IPv4 address (d.d.d.d).
   535	func parseIPv4(s string) IP {
   536		var p [IPv4len]byte
   537		for i := 0; i < IPv4len; i++ {
   538			if len(s) == 0 {
   539				// Missing octets.
   540				return nil
   541			}
   542			if i > 0 {
   543				if s[0] != '.' {
   544					return nil
   545				}
   546				s = s[1:]
   547			}
   548			n, c, ok := dtoi(s)
   549			if !ok || n > 0xFF {
   550				return nil
   551			}
   552			s = s[c:]
   553			p[i] = byte(n)
   554		}
   555		if len(s) != 0 {
   556			return nil
   557		}
   558		return IPv4(p[0], p[1], p[2], p[3])
   559	}
   560	
   561	// parseIPv6Zone parses s as a literal IPv6 address and its associated zone
   562	// identifier which is described in RFC 4007.
   563	func parseIPv6Zone(s string) (IP, string) {
   564		s, zone := splitHostZone(s)
   565		return parseIPv6(s), zone
   566	}
   567	
   568	// parseIPv6 parses s as a literal IPv6 address described in RFC 4291
   569	// and RFC 5952.
   570	func parseIPv6(s string) (ip IP) {
   571		ip = make(IP, IPv6len)
   572		ellipsis := -1 // position of ellipsis in ip
   573	
   574		// Might have leading ellipsis
   575		if len(s) >= 2 && s[0] == ':' && s[1] == ':' {
   576			ellipsis = 0
   577			s = s[2:]
   578			// Might be only ellipsis
   579			if len(s) == 0 {
   580				return ip
   581			}
   582		}
   583	
   584		// Loop, parsing hex numbers followed by colon.
   585		i := 0
   586		for i < IPv6len {
   587			// Hex number.
   588			n, c, ok := xtoi(s)
   589			if !ok || n > 0xFFFF {
   590				return nil
   591			}
   592	
   593			// If followed by dot, might be in trailing IPv4.
   594			if c < len(s) && s[c] == '.' {
   595				if ellipsis < 0 && i != IPv6len-IPv4len {
   596					// Not the right place.
   597					return nil
   598				}
   599				if i+IPv4len > IPv6len {
   600					// Not enough room.
   601					return nil
   602				}
   603				ip4 := parseIPv4(s)
   604				if ip4 == nil {
   605					return nil
   606				}
   607				ip[i] = ip4[12]
   608				ip[i+1] = ip4[13]
   609				ip[i+2] = ip4[14]
   610				ip[i+3] = ip4[15]
   611				s = ""
   612				i += IPv4len
   613				break
   614			}
   615	
   616			// Save this 16-bit chunk.
   617			ip[i] = byte(n >> 8)
   618			ip[i+1] = byte(n)
   619			i += 2
   620	
   621			// Stop at end of string.
   622			s = s[c:]
   623			if len(s) == 0 {
   624				break
   625			}
   626	
   627			// Otherwise must be followed by colon and more.
   628			if s[0] != ':' || len(s) == 1 {
   629				return nil
   630			}
   631			s = s[1:]
   632	
   633			// Look for ellipsis.
   634			if s[0] == ':' {
   635				if ellipsis >= 0 { // already have one
   636					return nil
   637				}
   638				ellipsis = i
   639				s = s[1:]
   640				if len(s) == 0 { // can be at end
   641					break
   642				}
   643			}
   644		}
   645	
   646		// Must have used entire string.
   647		if len(s) != 0 {
   648			return nil
   649		}
   650	
   651		// If didn't parse enough, expand ellipsis.
   652		if i < IPv6len {
   653			if ellipsis < 0 {
   654				return nil
   655			}
   656			n := IPv6len - i
   657			for j := i - 1; j >= ellipsis; j-- {
   658				ip[j+n] = ip[j]
   659			}
   660			for j := ellipsis + n - 1; j >= ellipsis; j-- {
   661				ip[j] = 0
   662			}
   663		} else if ellipsis >= 0 {
   664			// Ellipsis must represent at least one 0 group.
   665			return nil
   666		}
   667		return ip
   668	}
   669	
   670	// ParseIP parses s as an IP address, returning the result.
   671	// The string s can be in dotted decimal ("192.0.2.1")
   672	// or IPv6 ("2001:db8::68") form.
   673	// If s is not a valid textual representation of an IP address,
   674	// ParseIP returns nil.
   675	func ParseIP(s string) IP {
   676		for i := 0; i < len(s); i++ {
   677			switch s[i] {
   678			case '.':
   679				return parseIPv4(s)
   680			case ':':
   681				return parseIPv6(s)
   682			}
   683		}
   684		return nil
   685	}
   686	
   687	// parseIPZone parses s as an IP address, return it and its associated zone
   688	// identifier (IPv6 only).
   689	func parseIPZone(s string) (IP, string) {
   690		for i := 0; i < len(s); i++ {
   691			switch s[i] {
   692			case '.':
   693				return parseIPv4(s), ""
   694			case ':':
   695				return parseIPv6Zone(s)
   696			}
   697		}
   698		return nil, ""
   699	}
   700	
   701	// ParseCIDR parses s as a CIDR notation IP address and prefix length,
   702	// like "192.0.2.0/24" or "2001:db8::/32", as defined in
   703	// RFC 4632 and RFC 4291.
   704	//
   705	// It returns the IP address and the network implied by the IP and
   706	// prefix length.
   707	// For example, ParseCIDR("192.0.2.1/24") returns the IP address
   708	// 192.0.2.1 and the network 192.0.2.0/24.
   709	func ParseCIDR(s string) (IP, *IPNet, error) {
   710		i := bytealg.IndexByteString(s, '/')
   711		if i < 0 {
   712			return nil, nil, &ParseError{Type: "CIDR address", Text: s}
   713		}
   714		addr, mask := s[:i], s[i+1:]
   715		iplen := IPv4len
   716		ip := parseIPv4(addr)
   717		if ip == nil {
   718			iplen = IPv6len
   719			ip = parseIPv6(addr)
   720		}
   721		n, i, ok := dtoi(mask)
   722		if ip == nil || !ok || i != len(mask) || n < 0 || n > 8*iplen {
   723			return nil, nil, &ParseError{Type: "CIDR address", Text: s}
   724		}
   725		m := CIDRMask(n, 8*iplen)
   726		return ip, &IPNet{IP: ip.Mask(m), Mask: m}, nil
   727	}
   728	

View as plain text