// Copyright 2013 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // This file implements typechecking of call and selector expressions. package types import ( "go/ast" "go/token" ) func (check *Checker) call(x *operand, e *ast.CallExpr) exprKind { check.exprOrType(x, e.Fun) switch x.mode { case invalid: check.use(e.Args...) x.mode = invalid x.expr = e return statement case typexpr: // conversion T := x.typ x.mode = invalid switch n := len(e.Args); n { case 0: check.errorf(e.Rparen, "missing argument in conversion to %s", T) case 1: check.expr(x, e.Args[0]) if x.mode != invalid { check.conversion(x, T) } default: check.use(e.Args...) check.errorf(e.Args[n-1].Pos(), "too many arguments in conversion to %s", T) } x.expr = e return conversion case builtin: id := x.id if !check.builtin(x, e, id) { x.mode = invalid } x.expr = e // a non-constant result implies a function call if x.mode != invalid && x.mode != constant_ { check.hasCallOrRecv = true } return predeclaredFuncs[id].kind default: // function/method call sig, _ := x.typ.Underlying().(*Signature) if sig == nil { check.invalidOp(x.pos(), "cannot call non-function %s", x) x.mode = invalid x.expr = e return statement } arg, n, _ := unpack(func(x *operand, i int) { check.multiExpr(x, e.Args[i]) }, len(e.Args), false) if arg != nil { check.arguments(x, e, sig, arg, n) } else { x.mode = invalid } // determine result switch sig.results.Len() { case 0: x.mode = novalue case 1: x.mode = value x.typ = sig.results.vars[0].typ // unpack tuple default: x.mode = value x.typ = sig.results } x.expr = e check.hasCallOrRecv = true return statement } } // use type-checks each argument. // Useful to make sure expressions are evaluated // (and variables are "used") in the presence of other errors. // The arguments may be nil. func (check *Checker) use(arg ...ast.Expr) { var x operand for _, e := range arg { // The nil check below is necessary since certain AST fields // may legally be nil (e.g., the ast.SliceExpr.High field). if e != nil { check.rawExpr(&x, e, nil) } } } // useLHS is like use, but doesn't "use" top-level identifiers. // It should be called instead of use if the arguments are // expressions on the lhs of an assignment. // The arguments must not be nil. func (check *Checker) useLHS(arg ...ast.Expr) { var x operand for _, e := range arg { // If the lhs is an identifier denoting a variable v, this assignment // is not a 'use' of v. Remember current value of v.used and restore // after evaluating the lhs via check.rawExpr. var v *Var var v_used bool if ident, _ := unparen(e).(*ast.Ident); ident != nil { // never type-check the blank name on the lhs if ident.Name == "_" { continue } if _, obj := check.scope.LookupParent(ident.Name, token.NoPos); obj != nil { // It's ok to mark non-local variables, but ignore variables // from other packages to avoid potential race conditions with // dot-imported variables. if w, _ := obj.(*Var); w != nil && w.pkg == check.pkg { v = w v_used = v.used } } } check.rawExpr(&x, e, nil) if v != nil { v.used = v_used // restore v.used } } } // useGetter is like use, but takes a getter instead of a list of expressions. // It should be called instead of use if a getter is present to avoid repeated // evaluation of the first argument (since the getter was likely obtained via // unpack, which may have evaluated the first argument already). func (check *Checker) useGetter(get getter, n int) { var x operand for i := 0; i < n; i++ { get(&x, i) } } // A getter sets x as the i'th operand, where 0 <= i < n and n is the total // number of operands (context-specific, and maintained elsewhere). A getter // type-checks the i'th operand; the details of the actual check are getter- // specific. type getter func(x *operand, i int) // unpack takes a getter get and a number of operands n. If n == 1, unpack // calls the incoming getter for the first operand. If that operand is // invalid, unpack returns (nil, 0, false). Otherwise, if that operand is a // function call, or a comma-ok expression and allowCommaOk is set, the result // is a new getter and operand count providing access to the function results, // or comma-ok values, respectively. The third result value reports if it // is indeed the comma-ok case. In all other cases, the incoming getter and // operand count are returned unchanged, and the third result value is false. // // In other words, if there's exactly one operand that - after type-checking // by calling get - stands for multiple operands, the resulting getter provides // access to those operands instead. // // If the returned getter is called at most once for a given operand index i // (including i == 0), that operand is guaranteed to cause only one call of // the incoming getter with that i. // func unpack(get getter, n int, allowCommaOk bool) (getter, int, bool) { if n != 1 { // zero or multiple values return get, n, false } // possibly result of an n-valued function call or comma,ok value var x0 operand get(&x0, 0) if x0.mode == invalid { return nil, 0, false } if t, ok := x0.typ.(*Tuple); ok { // result of an n-valued function call return func(x *operand, i int) { x.mode = value x.expr = x0.expr x.typ = t.At(i).typ }, t.Len(), false } if x0.mode == mapindex || x0.mode == commaok { // comma-ok value if allowCommaOk { a := [2]Type{x0.typ, Typ[UntypedBool]} return func(x *operand, i int) { x.mode = value x.expr = x0.expr x.typ = a[i] }, 2, true } x0.mode = value } // single value return func(x *operand, i int) { if i != 0 { unreachable() } *x = x0 }, 1, false } // arguments checks argument passing for the call with the given signature. // The arg function provides the operand for the i'th argument. func (check *Checker) arguments(x *operand, call *ast.CallExpr, sig *Signature, arg getter, n int) { if call.Ellipsis.IsValid() { // last argument is of the form x... if !sig.variadic { check.errorf(call.Ellipsis, "cannot use ... in call to non-variadic %s", call.Fun) check.useGetter(arg, n) return } if len(call.Args) == 1 && n > 1 { // f()... is not permitted if f() is multi-valued check.errorf(call.Ellipsis, "cannot use ... with %d-valued %s", n, call.Args[0]) check.useGetter(arg, n) return } } // evaluate arguments context := check.sprintf("argument to %s", call.Fun) for i := 0; i < n; i++ { arg(x, i) if x.mode != invalid { var ellipsis token.Pos if i == n-1 && call.Ellipsis.IsValid() { ellipsis = call.Ellipsis } check.argument(sig, i, x, ellipsis, context) } } // check argument count if sig.variadic { // a variadic function accepts an "empty" // last argument: count one extra n++ } if n < sig.params.Len() { check.errorf(call.Rparen, "too few arguments in call to %s", call.Fun) // ok to continue } } // argument checks passing of argument x to the i'th parameter of the given signature. // If ellipsis is valid, the argument is followed by ... at that position in the call. func (check *Checker) argument(sig *Signature, i int, x *operand, ellipsis token.Pos, context string) { check.singleValue(x) if x.mode == invalid { return } n := sig.params.Len() // determine parameter type var typ Type switch { case i < n: typ = sig.params.vars[i].typ case sig.variadic: typ = sig.params.vars[n-1].typ if debug { if _, ok := typ.(*Slice); !ok { check.dump("%v: expected unnamed slice type, got %s", sig.params.vars[n-1].Pos(), typ) } } default: check.errorf(x.pos(), "too many arguments") return } if ellipsis.IsValid() { // argument is of the form x... and x is single-valued if i != n-1 { check.errorf(ellipsis, "can only use ... with matching parameter") return } if _, ok := x.typ.Underlying().(*Slice); !ok && x.typ != Typ[UntypedNil] { // see issue #18268 check.errorf(x.pos(), "cannot use %s as parameter of type %s", x, typ) return } } else if sig.variadic && i >= n-1 { // use the variadic parameter slice's element type typ = typ.(*Slice).elem } check.assignment(x, typ, context) } func (check *Checker) selector(x *operand, e *ast.SelectorExpr) { // these must be declared before the "goto Error" statements var ( obj Object index []int indirect bool ) sel := e.Sel.Name // If the identifier refers to a package, handle everything here // so we don't need a "package" mode for operands: package names // can only appear in qualified identifiers which are mapped to // selector expressions. if ident, ok := e.X.(*ast.Ident); ok { obj := check.lookup(ident.Name) if pname, _ := obj.(*PkgName); pname != nil { assert(pname.pkg == check.pkg) check.recordUse(ident, pname) pname.used = true pkg := pname.imported exp := pkg.scope.Lookup(sel) if exp == nil { if !pkg.fake { check.errorf(e.Sel.Pos(), "%s not declared by package %s", sel, pkg.name) } goto Error } if !exp.Exported() { check.errorf(e.Sel.Pos(), "%s not exported by package %s", sel, pkg.name) // ok to continue } check.recordUse(e.Sel, exp) // Simplified version of the code for *ast.Idents: // - imported objects are always fully initialized switch exp := exp.(type) { case *Const: assert(exp.Val() != nil) x.mode = constant_ x.typ = exp.typ x.val = exp.val case *TypeName: x.mode = typexpr x.typ = exp.typ case *Var: x.mode = variable x.typ = exp.typ case *Func: x.mode = value x.typ = exp.typ case *Builtin: x.mode = builtin x.typ = exp.typ x.id = exp.id default: check.dump("unexpected object %v", exp) unreachable() } x.expr = e return } } check.exprOrType(x, e.X) if x.mode == invalid { goto Error } obj, index, indirect = LookupFieldOrMethod(x.typ, x.mode == variable, check.pkg, sel) if obj == nil { switch { case index != nil: // TODO(gri) should provide actual type where the conflict happens check.errorf(e.Sel.Pos(), "ambiguous selector %s", sel) case indirect: // TODO(gri) be more specific with this error message check.errorf(e.Sel.Pos(), "%s is not in method set of %s", sel, x.typ) default: // TODO(gri) should check if capitalization of sel matters and provide better error message in that case check.errorf(e.Sel.Pos(), "%s.%s undefined (type %s has no field or method %s)", x.expr, sel, x.typ, sel) } goto Error } // methods may not have a fully set up signature yet if m, _ := obj.(*Func); m != nil { check.objDecl(m, nil) } if x.mode == typexpr { // method expression m, _ := obj.(*Func) if m == nil { // TODO(gri) should check if capitalization of sel matters and provide better error message in that case check.errorf(e.Sel.Pos(), "%s.%s undefined (type %s has no method %s)", x.expr, sel, x.typ, sel) goto Error } check.recordSelection(e, MethodExpr, x.typ, m, index, indirect) // the receiver type becomes the type of the first function // argument of the method expression's function type var params []*Var sig := m.typ.(*Signature) if sig.params != nil { params = sig.params.vars } x.mode = value x.typ = &Signature{ params: NewTuple(append([]*Var{NewVar(token.NoPos, check.pkg, "", x.typ)}, params...)...), results: sig.results, variadic: sig.variadic, } check.addDeclDep(m) } else { // regular selector switch obj := obj.(type) { case *Var: check.recordSelection(e, FieldVal, x.typ, obj, index, indirect) if x.mode == variable || indirect { x.mode = variable } else { x.mode = value } x.typ = obj.typ case *Func: // TODO(gri) If we needed to take into account the receiver's // addressability, should we report the type &(x.typ) instead? check.recordSelection(e, MethodVal, x.typ, obj, index, indirect) if debug { // Verify that LookupFieldOrMethod and MethodSet.Lookup agree. typ := x.typ if x.mode == variable { // If typ is not an (unnamed) pointer or an interface, // use *typ instead, because the method set of *typ // includes the methods of typ. // Variables are addressable, so we can always take their // address. if _, ok := typ.(*Pointer); !ok && !IsInterface(typ) { typ = &Pointer{base: typ} } } // If we created a synthetic pointer type above, we will throw // away the method set computed here after use. // TODO(gri) Method set computation should probably always compute // both, the value and the pointer receiver method set and represent // them in a single structure. // TODO(gri) Consider also using a method set cache for the lifetime // of checker once we rely on MethodSet lookup instead of individual // lookup. mset := NewMethodSet(typ) if m := mset.Lookup(check.pkg, sel); m == nil || m.obj != obj { check.dump("%v: (%s).%v -> %s", e.Pos(), typ, obj.name, m) check.dump("%s\n", mset) panic("method sets and lookup don't agree") } } x.mode = value // remove receiver sig := *obj.typ.(*Signature) sig.recv = nil x.typ = &sig check.addDeclDep(obj) default: unreachable() } } // everything went well x.expr = e return Error: x.mode = invalid x.expr = e }