...

Source file src/compress/flate/inflate.go

     1	// Copyright 2009 The Go Authors. All rights reserved.
     2	// Use of this source code is governed by a BSD-style
     3	// license that can be found in the LICENSE file.
     4	
     5	// Package flate implements the DEFLATE compressed data format, described in
     6	// RFC 1951.  The gzip and zlib packages implement access to DEFLATE-based file
     7	// formats.
     8	package flate
     9	
    10	import (
    11		"bufio"
    12		"io"
    13		"math/bits"
    14		"strconv"
    15		"sync"
    16	)
    17	
    18	const (
    19		maxCodeLen = 16 // max length of Huffman code
    20		// The next three numbers come from the RFC section 3.2.7, with the
    21		// additional proviso in section 3.2.5 which implies that distance codes
    22		// 30 and 31 should never occur in compressed data.
    23		maxNumLit  = 286
    24		maxNumDist = 30
    25		numCodes   = 19 // number of codes in Huffman meta-code
    26	)
    27	
    28	// Initialize the fixedHuffmanDecoder only once upon first use.
    29	var fixedOnce sync.Once
    30	var fixedHuffmanDecoder huffmanDecoder
    31	
    32	// A CorruptInputError reports the presence of corrupt input at a given offset.
    33	type CorruptInputError int64
    34	
    35	func (e CorruptInputError) Error() string {
    36		return "flate: corrupt input before offset " + strconv.FormatInt(int64(e), 10)
    37	}
    38	
    39	// An InternalError reports an error in the flate code itself.
    40	type InternalError string
    41	
    42	func (e InternalError) Error() string { return "flate: internal error: " + string(e) }
    43	
    44	// A ReadError reports an error encountered while reading input.
    45	//
    46	// Deprecated: No longer returned.
    47	type ReadError struct {
    48		Offset int64 // byte offset where error occurred
    49		Err    error // error returned by underlying Read
    50	}
    51	
    52	func (e *ReadError) Error() string {
    53		return "flate: read error at offset " + strconv.FormatInt(e.Offset, 10) + ": " + e.Err.Error()
    54	}
    55	
    56	// A WriteError reports an error encountered while writing output.
    57	//
    58	// Deprecated: No longer returned.
    59	type WriteError struct {
    60		Offset int64 // byte offset where error occurred
    61		Err    error // error returned by underlying Write
    62	}
    63	
    64	func (e *WriteError) Error() string {
    65		return "flate: write error at offset " + strconv.FormatInt(e.Offset, 10) + ": " + e.Err.Error()
    66	}
    67	
    68	// Resetter resets a ReadCloser returned by NewReader or NewReaderDict
    69	// to switch to a new underlying Reader. This permits reusing a ReadCloser
    70	// instead of allocating a new one.
    71	type Resetter interface {
    72		// Reset discards any buffered data and resets the Resetter as if it was
    73		// newly initialized with the given reader.
    74		Reset(r io.Reader, dict []byte) error
    75	}
    76	
    77	// The data structure for decoding Huffman tables is based on that of
    78	// zlib. There is a lookup table of a fixed bit width (huffmanChunkBits),
    79	// For codes smaller than the table width, there are multiple entries
    80	// (each combination of trailing bits has the same value). For codes
    81	// larger than the table width, the table contains a link to an overflow
    82	// table. The width of each entry in the link table is the maximum code
    83	// size minus the chunk width.
    84	//
    85	// Note that you can do a lookup in the table even without all bits
    86	// filled. Since the extra bits are zero, and the DEFLATE Huffman codes
    87	// have the property that shorter codes come before longer ones, the
    88	// bit length estimate in the result is a lower bound on the actual
    89	// number of bits.
    90	//
    91	// See the following:
    92	//	https://github.com/madler/zlib/raw/master/doc/algorithm.txt
    93	
    94	// chunk & 15 is number of bits
    95	// chunk >> 4 is value, including table link
    96	
    97	const (
    98		huffmanChunkBits  = 9
    99		huffmanNumChunks  = 1 << huffmanChunkBits
   100		huffmanCountMask  = 15
   101		huffmanValueShift = 4
   102	)
   103	
   104	type huffmanDecoder struct {
   105		min      int                      // the minimum code length
   106		chunks   [huffmanNumChunks]uint32 // chunks as described above
   107		links    [][]uint32               // overflow links
   108		linkMask uint32                   // mask the width of the link table
   109	}
   110	
   111	// Initialize Huffman decoding tables from array of code lengths.
   112	// Following this function, h is guaranteed to be initialized into a complete
   113	// tree (i.e., neither over-subscribed nor under-subscribed). The exception is a
   114	// degenerate case where the tree has only a single symbol with length 1. Empty
   115	// trees are permitted.
   116	func (h *huffmanDecoder) init(lengths []int) bool {
   117		// Sanity enables additional runtime tests during Huffman
   118		// table construction. It's intended to be used during
   119		// development to supplement the currently ad-hoc unit tests.
   120		const sanity = false
   121	
   122		if h.min != 0 {
   123			*h = huffmanDecoder{}
   124		}
   125	
   126		// Count number of codes of each length,
   127		// compute min and max length.
   128		var count [maxCodeLen]int
   129		var min, max int
   130		for _, n := range lengths {
   131			if n == 0 {
   132				continue
   133			}
   134			if min == 0 || n < min {
   135				min = n
   136			}
   137			if n > max {
   138				max = n
   139			}
   140			count[n]++
   141		}
   142	
   143		// Empty tree. The decompressor.huffSym function will fail later if the tree
   144		// is used. Technically, an empty tree is only valid for the HDIST tree and
   145		// not the HCLEN and HLIT tree. However, a stream with an empty HCLEN tree
   146		// is guaranteed to fail since it will attempt to use the tree to decode the
   147		// codes for the HLIT and HDIST trees. Similarly, an empty HLIT tree is
   148		// guaranteed to fail later since the compressed data section must be
   149		// composed of at least one symbol (the end-of-block marker).
   150		if max == 0 {
   151			return true
   152		}
   153	
   154		code := 0
   155		var nextcode [maxCodeLen]int
   156		for i := min; i <= max; i++ {
   157			code <<= 1
   158			nextcode[i] = code
   159			code += count[i]
   160		}
   161	
   162		// Check that the coding is complete (i.e., that we've
   163		// assigned all 2-to-the-max possible bit sequences).
   164		// Exception: To be compatible with zlib, we also need to
   165		// accept degenerate single-code codings. See also
   166		// TestDegenerateHuffmanCoding.
   167		if code != 1<<uint(max) && !(code == 1 && max == 1) {
   168			return false
   169		}
   170	
   171		h.min = min
   172		if max > huffmanChunkBits {
   173			numLinks := 1 << (uint(max) - huffmanChunkBits)
   174			h.linkMask = uint32(numLinks - 1)
   175	
   176			// create link tables
   177			link := nextcode[huffmanChunkBits+1] >> 1
   178			h.links = make([][]uint32, huffmanNumChunks-link)
   179			for j := uint(link); j < huffmanNumChunks; j++ {
   180				reverse := int(bits.Reverse16(uint16(j)))
   181				reverse >>= uint(16 - huffmanChunkBits)
   182				off := j - uint(link)
   183				if sanity && h.chunks[reverse] != 0 {
   184					panic("impossible: overwriting existing chunk")
   185				}
   186				h.chunks[reverse] = uint32(off<<huffmanValueShift | (huffmanChunkBits + 1))
   187				h.links[off] = make([]uint32, numLinks)
   188			}
   189		}
   190	
   191		for i, n := range lengths {
   192			if n == 0 {
   193				continue
   194			}
   195			code := nextcode[n]
   196			nextcode[n]++
   197			chunk := uint32(i<<huffmanValueShift | n)
   198			reverse := int(bits.Reverse16(uint16(code)))
   199			reverse >>= uint(16 - n)
   200			if n <= huffmanChunkBits {
   201				for off := reverse; off < len(h.chunks); off += 1 << uint(n) {
   202					// We should never need to overwrite
   203					// an existing chunk. Also, 0 is
   204					// never a valid chunk, because the
   205					// lower 4 "count" bits should be
   206					// between 1 and 15.
   207					if sanity && h.chunks[off] != 0 {
   208						panic("impossible: overwriting existing chunk")
   209					}
   210					h.chunks[off] = chunk
   211				}
   212			} else {
   213				j := reverse & (huffmanNumChunks - 1)
   214				if sanity && h.chunks[j]&huffmanCountMask != huffmanChunkBits+1 {
   215					// Longer codes should have been
   216					// associated with a link table above.
   217					panic("impossible: not an indirect chunk")
   218				}
   219				value := h.chunks[j] >> huffmanValueShift
   220				linktab := h.links[value]
   221				reverse >>= huffmanChunkBits
   222				for off := reverse; off < len(linktab); off += 1 << uint(n-huffmanChunkBits) {
   223					if sanity && linktab[off] != 0 {
   224						panic("impossible: overwriting existing chunk")
   225					}
   226					linktab[off] = chunk
   227				}
   228			}
   229		}
   230	
   231		if sanity {
   232			// Above we've sanity checked that we never overwrote
   233			// an existing entry. Here we additionally check that
   234			// we filled the tables completely.
   235			for i, chunk := range h.chunks {
   236				if chunk == 0 {
   237					// As an exception, in the degenerate
   238					// single-code case, we allow odd
   239					// chunks to be missing.
   240					if code == 1 && i%2 == 1 {
   241						continue
   242					}
   243					panic("impossible: missing chunk")
   244				}
   245			}
   246			for _, linktab := range h.links {
   247				for _, chunk := range linktab {
   248					if chunk == 0 {
   249						panic("impossible: missing chunk")
   250					}
   251				}
   252			}
   253		}
   254	
   255		return true
   256	}
   257	
   258	// The actual read interface needed by NewReader.
   259	// If the passed in io.Reader does not also have ReadByte,
   260	// the NewReader will introduce its own buffering.
   261	type Reader interface {
   262		io.Reader
   263		io.ByteReader
   264	}
   265	
   266	// Decompress state.
   267	type decompressor struct {
   268		// Input source.
   269		r       Reader
   270		roffset int64
   271	
   272		// Input bits, in top of b.
   273		b  uint32
   274		nb uint
   275	
   276		// Huffman decoders for literal/length, distance.
   277		h1, h2 huffmanDecoder
   278	
   279		// Length arrays used to define Huffman codes.
   280		bits     *[maxNumLit + maxNumDist]int
   281		codebits *[numCodes]int
   282	
   283		// Output history, buffer.
   284		dict dictDecoder
   285	
   286		// Temporary buffer (avoids repeated allocation).
   287		buf [4]byte
   288	
   289		// Next step in the decompression,
   290		// and decompression state.
   291		step      func(*decompressor)
   292		stepState int
   293		final     bool
   294		err       error
   295		toRead    []byte
   296		hl, hd    *huffmanDecoder
   297		copyLen   int
   298		copyDist  int
   299	}
   300	
   301	func (f *decompressor) nextBlock() {
   302		for f.nb < 1+2 {
   303			if f.err = f.moreBits(); f.err != nil {
   304				return
   305			}
   306		}
   307		f.final = f.b&1 == 1
   308		f.b >>= 1
   309		typ := f.b & 3
   310		f.b >>= 2
   311		f.nb -= 1 + 2
   312		switch typ {
   313		case 0:
   314			f.dataBlock()
   315		case 1:
   316			// compressed, fixed Huffman tables
   317			f.hl = &fixedHuffmanDecoder
   318			f.hd = nil
   319			f.huffmanBlock()
   320		case 2:
   321			// compressed, dynamic Huffman tables
   322			if f.err = f.readHuffman(); f.err != nil {
   323				break
   324			}
   325			f.hl = &f.h1
   326			f.hd = &f.h2
   327			f.huffmanBlock()
   328		default:
   329			// 3 is reserved.
   330			f.err = CorruptInputError(f.roffset)
   331		}
   332	}
   333	
   334	func (f *decompressor) Read(b []byte) (int, error) {
   335		for {
   336			if len(f.toRead) > 0 {
   337				n := copy(b, f.toRead)
   338				f.toRead = f.toRead[n:]
   339				if len(f.toRead) == 0 {
   340					return n, f.err
   341				}
   342				return n, nil
   343			}
   344			if f.err != nil {
   345				return 0, f.err
   346			}
   347			f.step(f)
   348			if f.err != nil && len(f.toRead) == 0 {
   349				f.toRead = f.dict.readFlush() // Flush what's left in case of error
   350			}
   351		}
   352	}
   353	
   354	func (f *decompressor) Close() error {
   355		if f.err == io.EOF {
   356			return nil
   357		}
   358		return f.err
   359	}
   360	
   361	// RFC 1951 section 3.2.7.
   362	// Compression with dynamic Huffman codes
   363	
   364	var codeOrder = [...]int{16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}
   365	
   366	func (f *decompressor) readHuffman() error {
   367		// HLIT[5], HDIST[5], HCLEN[4].
   368		for f.nb < 5+5+4 {
   369			if err := f.moreBits(); err != nil {
   370				return err
   371			}
   372		}
   373		nlit := int(f.b&0x1F) + 257
   374		if nlit > maxNumLit {
   375			return CorruptInputError(f.roffset)
   376		}
   377		f.b >>= 5
   378		ndist := int(f.b&0x1F) + 1
   379		if ndist > maxNumDist {
   380			return CorruptInputError(f.roffset)
   381		}
   382		f.b >>= 5
   383		nclen := int(f.b&0xF) + 4
   384		// numCodes is 19, so nclen is always valid.
   385		f.b >>= 4
   386		f.nb -= 5 + 5 + 4
   387	
   388		// (HCLEN+4)*3 bits: code lengths in the magic codeOrder order.
   389		for i := 0; i < nclen; i++ {
   390			for f.nb < 3 {
   391				if err := f.moreBits(); err != nil {
   392					return err
   393				}
   394			}
   395			f.codebits[codeOrder[i]] = int(f.b & 0x7)
   396			f.b >>= 3
   397			f.nb -= 3
   398		}
   399		for i := nclen; i < len(codeOrder); i++ {
   400			f.codebits[codeOrder[i]] = 0
   401		}
   402		if !f.h1.init(f.codebits[0:]) {
   403			return CorruptInputError(f.roffset)
   404		}
   405	
   406		// HLIT + 257 code lengths, HDIST + 1 code lengths,
   407		// using the code length Huffman code.
   408		for i, n := 0, nlit+ndist; i < n; {
   409			x, err := f.huffSym(&f.h1)
   410			if err != nil {
   411				return err
   412			}
   413			if x < 16 {
   414				// Actual length.
   415				f.bits[i] = x
   416				i++
   417				continue
   418			}
   419			// Repeat previous length or zero.
   420			var rep int
   421			var nb uint
   422			var b int
   423			switch x {
   424			default:
   425				return InternalError("unexpected length code")
   426			case 16:
   427				rep = 3
   428				nb = 2
   429				if i == 0 {
   430					return CorruptInputError(f.roffset)
   431				}
   432				b = f.bits[i-1]
   433			case 17:
   434				rep = 3
   435				nb = 3
   436				b = 0
   437			case 18:
   438				rep = 11
   439				nb = 7
   440				b = 0
   441			}
   442			for f.nb < nb {
   443				if err := f.moreBits(); err != nil {
   444					return err
   445				}
   446			}
   447			rep += int(f.b & uint32(1<<nb-1))
   448			f.b >>= nb
   449			f.nb -= nb
   450			if i+rep > n {
   451				return CorruptInputError(f.roffset)
   452			}
   453			for j := 0; j < rep; j++ {
   454				f.bits[i] = b
   455				i++
   456			}
   457		}
   458	
   459		if !f.h1.init(f.bits[0:nlit]) || !f.h2.init(f.bits[nlit:nlit+ndist]) {
   460			return CorruptInputError(f.roffset)
   461		}
   462	
   463		// As an optimization, we can initialize the min bits to read at a time
   464		// for the HLIT tree to the length of the EOB marker since we know that
   465		// every block must terminate with one. This preserves the property that
   466		// we never read any extra bytes after the end of the DEFLATE stream.
   467		if f.h1.min < f.bits[endBlockMarker] {
   468			f.h1.min = f.bits[endBlockMarker]
   469		}
   470	
   471		return nil
   472	}
   473	
   474	// Decode a single Huffman block from f.
   475	// hl and hd are the Huffman states for the lit/length values
   476	// and the distance values, respectively. If hd == nil, using the
   477	// fixed distance encoding associated with fixed Huffman blocks.
   478	func (f *decompressor) huffmanBlock() {
   479		const (
   480			stateInit = iota // Zero value must be stateInit
   481			stateDict
   482		)
   483	
   484		switch f.stepState {
   485		case stateInit:
   486			goto readLiteral
   487		case stateDict:
   488			goto copyHistory
   489		}
   490	
   491	readLiteral:
   492		// Read literal and/or (length, distance) according to RFC section 3.2.3.
   493		{
   494			v, err := f.huffSym(f.hl)
   495			if err != nil {
   496				f.err = err
   497				return
   498			}
   499			var n uint // number of bits extra
   500			var length int
   501			switch {
   502			case v < 256:
   503				f.dict.writeByte(byte(v))
   504				if f.dict.availWrite() == 0 {
   505					f.toRead = f.dict.readFlush()
   506					f.step = (*decompressor).huffmanBlock
   507					f.stepState = stateInit
   508					return
   509				}
   510				goto readLiteral
   511			case v == 256:
   512				f.finishBlock()
   513				return
   514			// otherwise, reference to older data
   515			case v < 265:
   516				length = v - (257 - 3)
   517				n = 0
   518			case v < 269:
   519				length = v*2 - (265*2 - 11)
   520				n = 1
   521			case v < 273:
   522				length = v*4 - (269*4 - 19)
   523				n = 2
   524			case v < 277:
   525				length = v*8 - (273*8 - 35)
   526				n = 3
   527			case v < 281:
   528				length = v*16 - (277*16 - 67)
   529				n = 4
   530			case v < 285:
   531				length = v*32 - (281*32 - 131)
   532				n = 5
   533			case v < maxNumLit:
   534				length = 258
   535				n = 0
   536			default:
   537				f.err = CorruptInputError(f.roffset)
   538				return
   539			}
   540			if n > 0 {
   541				for f.nb < n {
   542					if err = f.moreBits(); err != nil {
   543						f.err = err
   544						return
   545					}
   546				}
   547				length += int(f.b & uint32(1<<n-1))
   548				f.b >>= n
   549				f.nb -= n
   550			}
   551	
   552			var dist int
   553			if f.hd == nil {
   554				for f.nb < 5 {
   555					if err = f.moreBits(); err != nil {
   556						f.err = err
   557						return
   558					}
   559				}
   560				dist = int(bits.Reverse8(uint8(f.b & 0x1F << 3)))
   561				f.b >>= 5
   562				f.nb -= 5
   563			} else {
   564				if dist, err = f.huffSym(f.hd); err != nil {
   565					f.err = err
   566					return
   567				}
   568			}
   569	
   570			switch {
   571			case dist < 4:
   572				dist++
   573			case dist < maxNumDist:
   574				nb := uint(dist-2) >> 1
   575				// have 1 bit in bottom of dist, need nb more.
   576				extra := (dist & 1) << nb
   577				for f.nb < nb {
   578					if err = f.moreBits(); err != nil {
   579						f.err = err
   580						return
   581					}
   582				}
   583				extra |= int(f.b & uint32(1<<nb-1))
   584				f.b >>= nb
   585				f.nb -= nb
   586				dist = 1<<(nb+1) + 1 + extra
   587			default:
   588				f.err = CorruptInputError(f.roffset)
   589				return
   590			}
   591	
   592			// No check on length; encoding can be prescient.
   593			if dist > f.dict.histSize() {
   594				f.err = CorruptInputError(f.roffset)
   595				return
   596			}
   597	
   598			f.copyLen, f.copyDist = length, dist
   599			goto copyHistory
   600		}
   601	
   602	copyHistory:
   603		// Perform a backwards copy according to RFC section 3.2.3.
   604		{
   605			cnt := f.dict.tryWriteCopy(f.copyDist, f.copyLen)
   606			if cnt == 0 {
   607				cnt = f.dict.writeCopy(f.copyDist, f.copyLen)
   608			}
   609			f.copyLen -= cnt
   610	
   611			if f.dict.availWrite() == 0 || f.copyLen > 0 {
   612				f.toRead = f.dict.readFlush()
   613				f.step = (*decompressor).huffmanBlock // We need to continue this work
   614				f.stepState = stateDict
   615				return
   616			}
   617			goto readLiteral
   618		}
   619	}
   620	
   621	// Copy a single uncompressed data block from input to output.
   622	func (f *decompressor) dataBlock() {
   623		// Uncompressed.
   624		// Discard current half-byte.
   625		f.nb = 0
   626		f.b = 0
   627	
   628		// Length then ones-complement of length.
   629		nr, err := io.ReadFull(f.r, f.buf[0:4])
   630		f.roffset += int64(nr)
   631		if err != nil {
   632			f.err = noEOF(err)
   633			return
   634		}
   635		n := int(f.buf[0]) | int(f.buf[1])<<8
   636		nn := int(f.buf[2]) | int(f.buf[3])<<8
   637		if uint16(nn) != uint16(^n) {
   638			f.err = CorruptInputError(f.roffset)
   639			return
   640		}
   641	
   642		if n == 0 {
   643			f.toRead = f.dict.readFlush()
   644			f.finishBlock()
   645			return
   646		}
   647	
   648		f.copyLen = n
   649		f.copyData()
   650	}
   651	
   652	// copyData copies f.copyLen bytes from the underlying reader into f.hist.
   653	// It pauses for reads when f.hist is full.
   654	func (f *decompressor) copyData() {
   655		buf := f.dict.writeSlice()
   656		if len(buf) > f.copyLen {
   657			buf = buf[:f.copyLen]
   658		}
   659	
   660		cnt, err := io.ReadFull(f.r, buf)
   661		f.roffset += int64(cnt)
   662		f.copyLen -= cnt
   663		f.dict.writeMark(cnt)
   664		if err != nil {
   665			f.err = noEOF(err)
   666			return
   667		}
   668	
   669		if f.dict.availWrite() == 0 || f.copyLen > 0 {
   670			f.toRead = f.dict.readFlush()
   671			f.step = (*decompressor).copyData
   672			return
   673		}
   674		f.finishBlock()
   675	}
   676	
   677	func (f *decompressor) finishBlock() {
   678		if f.final {
   679			if f.dict.availRead() > 0 {
   680				f.toRead = f.dict.readFlush()
   681			}
   682			f.err = io.EOF
   683		}
   684		f.step = (*decompressor).nextBlock
   685	}
   686	
   687	// noEOF returns err, unless err == io.EOF, in which case it returns io.ErrUnexpectedEOF.
   688	func noEOF(e error) error {
   689		if e == io.EOF {
   690			return io.ErrUnexpectedEOF
   691		}
   692		return e
   693	}
   694	
   695	func (f *decompressor) moreBits() error {
   696		c, err := f.r.ReadByte()
   697		if err != nil {
   698			return noEOF(err)
   699		}
   700		f.roffset++
   701		f.b |= uint32(c) << f.nb
   702		f.nb += 8
   703		return nil
   704	}
   705	
   706	// Read the next Huffman-encoded symbol from f according to h.
   707	func (f *decompressor) huffSym(h *huffmanDecoder) (int, error) {
   708		// Since a huffmanDecoder can be empty or be composed of a degenerate tree
   709		// with single element, huffSym must error on these two edge cases. In both
   710		// cases, the chunks slice will be 0 for the invalid sequence, leading it
   711		// satisfy the n == 0 check below.
   712		n := uint(h.min)
   713		// Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers,
   714		// but is smart enough to keep local variables in registers, so use nb and b,
   715		// inline call to moreBits and reassign b,nb back to f on return.
   716		nb, b := f.nb, f.b
   717		for {
   718			for nb < n {
   719				c, err := f.r.ReadByte()
   720				if err != nil {
   721					f.b = b
   722					f.nb = nb
   723					return 0, noEOF(err)
   724				}
   725				f.roffset++
   726				b |= uint32(c) << (nb & 31)
   727				nb += 8
   728			}
   729			chunk := h.chunks[b&(huffmanNumChunks-1)]
   730			n = uint(chunk & huffmanCountMask)
   731			if n > huffmanChunkBits {
   732				chunk = h.links[chunk>>huffmanValueShift][(b>>huffmanChunkBits)&h.linkMask]
   733				n = uint(chunk & huffmanCountMask)
   734			}
   735			if n <= nb {
   736				if n == 0 {
   737					f.b = b
   738					f.nb = nb
   739					f.err = CorruptInputError(f.roffset)
   740					return 0, f.err
   741				}
   742				f.b = b >> (n & 31)
   743				f.nb = nb - n
   744				return int(chunk >> huffmanValueShift), nil
   745			}
   746		}
   747	}
   748	
   749	func makeReader(r io.Reader) Reader {
   750		if rr, ok := r.(Reader); ok {
   751			return rr
   752		}
   753		return bufio.NewReader(r)
   754	}
   755	
   756	func fixedHuffmanDecoderInit() {
   757		fixedOnce.Do(func() {
   758			// These come from the RFC section 3.2.6.
   759			var bits [288]int
   760			for i := 0; i < 144; i++ {
   761				bits[i] = 8
   762			}
   763			for i := 144; i < 256; i++ {
   764				bits[i] = 9
   765			}
   766			for i := 256; i < 280; i++ {
   767				bits[i] = 7
   768			}
   769			for i := 280; i < 288; i++ {
   770				bits[i] = 8
   771			}
   772			fixedHuffmanDecoder.init(bits[:])
   773		})
   774	}
   775	
   776	func (f *decompressor) Reset(r io.Reader, dict []byte) error {
   777		*f = decompressor{
   778			r:        makeReader(r),
   779			bits:     f.bits,
   780			codebits: f.codebits,
   781			dict:     f.dict,
   782			step:     (*decompressor).nextBlock,
   783		}
   784		f.dict.init(maxMatchOffset, dict)
   785		return nil
   786	}
   787	
   788	// NewReader returns a new ReadCloser that can be used
   789	// to read the uncompressed version of r.
   790	// If r does not also implement io.ByteReader,
   791	// the decompressor may read more data than necessary from r.
   792	// It is the caller's responsibility to call Close on the ReadCloser
   793	// when finished reading.
   794	//
   795	// The ReadCloser returned by NewReader also implements Resetter.
   796	func NewReader(r io.Reader) io.ReadCloser {
   797		fixedHuffmanDecoderInit()
   798	
   799		var f decompressor
   800		f.r = makeReader(r)
   801		f.bits = new([maxNumLit + maxNumDist]int)
   802		f.codebits = new([numCodes]int)
   803		f.step = (*decompressor).nextBlock
   804		f.dict.init(maxMatchOffset, nil)
   805		return &f
   806	}
   807	
   808	// NewReaderDict is like NewReader but initializes the reader
   809	// with a preset dictionary. The returned Reader behaves as if
   810	// the uncompressed data stream started with the given dictionary,
   811	// which has already been read. NewReaderDict is typically used
   812	// to read data compressed by NewWriterDict.
   813	//
   814	// The ReadCloser returned by NewReader also implements Resetter.
   815	func NewReaderDict(r io.Reader, dict []byte) io.ReadCloser {
   816		fixedHuffmanDecoderInit()
   817	
   818		var f decompressor
   819		f.r = makeReader(r)
   820		f.bits = new([maxNumLit + maxNumDist]int)
   821		f.codebits = new([numCodes]int)
   822		f.step = (*decompressor).nextBlock
   823		f.dict.init(maxMatchOffset, dict)
   824		return &f
   825	}
   826	

View as plain text